Problem Set 4 (due Nov 16, 2015)

1. Relativistic Kinematics of Compton scattering

(a) Consider Comption scattering. A photon with momentum four vector $k^{\mu}=$ $(k, 0,0, k)=\hbar(\omega / c, 0,0, \omega / c)$ collides with a massive particle initially at rest with four momentum $p^{\mu}=(m c, 0,0,0)$. After the collision the photon momentum vector is $k, \mu=\left(k^{\prime}, k^{\prime} \sin \theta, 0, k^{\prime} \cos \theta\right)$. Use momentum conservation to find k^{\prime} / k in terms of m, ω, θ. This gives the corrected Compton differential cross-section [Eq. 14.127 Jackson] to the Thompson differential cross-section [Eq. 14.124 Jackson]. Show the steps.

2. Relativistic Kinematics of Coulomb scattering

(a) Consider the scattering (to be concrete one can think of Coulomb scattering but the following kinematic results apply to any scattering that conserves four momentum) of two particles with mass m_{1} and m_{2} in the centre of mass frame. This implies that the initial spatial momenta of the particles are equal and opposite, $p_{1}^{\mu}=\left(\sqrt{\mathbf{p}^{2}+m_{1}^{2} c^{2}}, \mathbf{p}\right), p_{2}^{\mu}=\left(\sqrt{\mathbf{p}^{2}+m_{2}^{2} c^{2}},-\mathbf{p}\right)$. Rewrite \mathbf{p}^{2} in terms of the total energy $E^{2}=s^{2}=\left(p_{1}^{\mu}+p_{2}^{\mu}\right)^{2}$ and the the masses. What is the magnitude of the spatial momentum after the collision $\left[\left(\mathbf{p}^{\prime}\right)^{2}\right]$?
(b) Show that the kinetic energy transferred to an electron (T) during a collision with momentum transfer $K^{\mu}=p^{\mu}-p^{\mu}$ is given by

$$
\begin{equation*}
-(K)^{2}=2 m_{e} T . \tag{1}
\end{equation*}
$$

(Conventionally, one defines $Q^{2}=-K^{2}$ thus obtaining $Q^{2}=2 m_{e} T$.) This is general and does not assume that the mass of the incident particle, M, is large compared to m_{e}. Now consider the incoming particle coming with a momentum $\mathbf{p}=M \gamma \beta c$ striking an electron initially at rest. Assuming $M>m_{e}$ and $M \gg|\mathbf{p}| c$ show that the maximum kinetic energy transferred to the electron, $T_{\text {max }}$, is given by

$$
\begin{equation*}
T_{\max }=2 \gamma^{2} \beta^{2} c^{2} m_{e} \tag{2}
\end{equation*}
$$

Now relax the assumption that $M \gg m_{e}$. Then show that,

$$
\begin{equation*}
T_{\max }=2 \gamma^{2} \beta^{2} c^{2} m_{e} \frac{1}{1+2 m_{e} E /\left(M^{2} c^{2}\right)+m_{e}^{2} / M^{2}} . \tag{3}
\end{equation*}
$$

3. Relativistic Kinematics in Bremsstrahlung

(a) Show that a single incident particle with mass $M \neq 0$ and intial four momentum $p^{\mu}=\left(\sqrt{M^{2}+\mathbf{p}^{2}}, \mathbf{p}\right)$ can not split into a photon and another particle with the same mass. This is the quantum-mechanical interpretation of the classical statement that a charge moving without acceleration can not emit radiation. Furthermore, show that if $M=0$, it can only split into a photon moving collinearly or anticollinearly with the initial momentum
(b) Now consider the scattering of the incident particle of mass M with a heavy nucleus $\mathcal{M} \gg M$. Let the four momentum transferred to the heavy nucleus be $K^{\mu}=\left(K^{0}, \mathbf{K}\right)$. The quantum mechanical interpretation of Bremsstrahlung is that the momentum exchange with the nucleus can kinematically allow the emission of a photon - acceleration of M can lead to emission of radiation. In general, the kinematical constraint

$$
\begin{equation*}
p^{\mu}+(\mathcal{M} c, 0) \rightarrow\left(p^{\prime}\right)^{\mu}+\left(\mathcal{M} c+K^{0}, \mathbf{K}\right)+\hbar(k, \mathbf{k}) \tag{4}
\end{equation*}
$$

is quite complicated. (Google "three body phase space" and "Dalitz plot"). (Here, $|\mathbf{k}|=\omega / c$ is the photon wave-vector.)
But in the limit $\mathcal{M c} \gg|\mathbf{K}|$, show that $K^{0}=0$. Thus,

$$
\begin{equation*}
K^{\mu}=\left(0, \mathbf{p}^{\prime}+\mathbf{k}-\mathbf{p}\right) \tag{5}
\end{equation*}
$$

This implies $K^{2}=-Q^{2}=-\left(\mathbf{p}^{\prime}+\mathbf{k}-\mathbf{p}\right)^{2}$. This simplifies the calculation substantially, and we shall consider this limit in the following two parts
(c) First consider the non-relativistic case $M c \gg|\mathbf{q}|$. The four momenta can then be written as

$$
\begin{align*}
p^{\mu} & \approx\left(M c+\frac{\mathbf{p}^{2}}{2 M c}, \mathbf{p}\right) \tag{6}\\
\left(p^{\prime}\right)^{\mu} & \approx\left(M c+\frac{\left(\mathbf{p}^{\prime}\right)^{2}}{2 M c}, \mathbf{p}^{\prime}\right)
\end{align*}
$$

The energy conservation equation gives

$$
\begin{equation*}
\frac{\mathbf{p}^{2}}{2 M}=\frac{\left(\mathbf{p}^{\prime}\right)^{2}}{2 M}+\hbar \omega \tag{7}
\end{equation*}
$$

Show that

$$
\begin{equation*}
Q^{2}=\left(\mathbf{p}^{\prime}+\mathbf{k}-\mathbf{p}\right)^{2} \approx\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2} \tag{8}
\end{equation*}
$$

The maximum (minimum) value of Q^{2} arises when \mathbf{p}^{\prime} and \mathbf{p} are anti-parallel (parallel).

$$
\begin{align*}
Q_{\max }^{2} & =\left(\left|\mathbf{p}^{\prime}\right|+|\mathbf{p}|\right)^{2}=\left(\sqrt{2 M E^{\prime}}+\sqrt{2 M E}\right)^{2} \\
Q_{\min }^{2} & =\left(\left|\mathbf{p}^{\prime}\right|-|\mathbf{p}|\right)^{2}=\left(\sqrt{2 M E^{\prime}}-\sqrt{2 M E}\right)^{2} \tag{9}
\end{align*}
$$

where $E=\mathbf{p}^{2} /(2 M)$ and $E^{\prime}=\left(\mathbf{p}^{\prime}\right)^{2} /(2 M)$. Show that,

$$
\begin{equation*}
\frac{Q_{\max }}{Q_{\min }}=\frac{\left(\sqrt{E}+\sqrt{E^{\prime}}\right)^{2}}{\hbar \omega} \tag{10}
\end{equation*}
$$

(d) Now consider the highly relativistic case $M c \ll|\mathbf{q}|$. The four momenta can then be written as

$$
\begin{align*}
p^{\mu} & \approx\left(p+\frac{(M c)^{2}}{2 p}, \mathbf{p}\right) \\
\left(p^{\prime}\right)^{\mu} & \approx\left(p^{\prime}+\frac{(M c)^{2}}{2 p^{\prime}}, \mathbf{p}^{\prime}\right) \tag{11}
\end{align*}
$$

The energy conservation equation gives

$$
\begin{equation*}
p+\frac{(M c)^{2}}{2 p}=p^{\prime}+\frac{(M c)^{2}}{2 p^{\prime}}+\hbar \omega \tag{12}
\end{equation*}
$$

The maximum (minimum) value of Q^{2} arises when \mathbf{p}^{\prime} and \mathbf{p}, \mathbf{k} are anti-parallel (parallel).

$$
\begin{align*}
Q_{\max }^{2} & =\left(\left|\mathbf{p}^{\prime}\right|+|\mathbf{p}|+|\mathbf{k}|\right)^{2} \\
Q_{\min }^{2} & =\left(\left|\mathbf{p}^{\prime}\right|-|\mathbf{p}|-|\mathbf{k}|\right)^{2} \tag{13}
\end{align*}
$$

Write down $Q_{\max }$ and $Q_{\min }$ in terms of p and ω.
(Note that the discussion also applies to the emission of other massless or very light particles, for eg. neutrinos instead of photons. Ergo, neutrino bremsstrahlung)
4. Coulomb scattering Problem 13.1 Jackson
5. Bremsstrahlung from rigid sphere Problem 15.2 Jackson
6. Bremsstrahlung from rigid sphere Problem 15.3 Jackson

