Problem Set 3 (due Feb 26, 2014)

1. Correlation function for time-like and space-like separations (Feel free to use Mathematica. Another useful resource is Gradsteyn and Ryzhik.) We define

$$
\begin{equation*}
D(x-y)=\langle\Omega| \phi(x) \phi(y)|\Omega\rangle . \tag{1}
\end{equation*}
$$

Show that in non-interacting scalar field theory

$$
\begin{equation*}
D(x-y)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} e^{-i p \cdot(x-y)} \tag{2}
\end{equation*}
$$

where p^{μ} is on shell. We saw that $D(x-y)=D(\Lambda(x-y))$. Let us restrict to orthochronous lorentz transformations Λ, which do not change the sign of $y^{0}-x^{0}$. Consider three cases.
(a) First consider $(x-y)^{2}=t^{2}>0$, with $\left(y^{0}-x^{0}\right)>0$. Then we can choose Λ to go to a frame where $\Lambda^{\mu}{ }_{\nu}(y-x)^{\nu}=(t, \mathbf{0})$, with $t>0$. Express the value of D in terms of Bessel functions. Plot the real and imaginary part of the D as a function of t from $m=1 \mathrm{MeV}$.
(b) Now consider $(x-y)^{2}=t^{2}>0$, with $\left(y^{0}-x^{0}\right)<0$. Then we can choose Λ to go to a frame where $\Lambda^{\mu}{ }_{\nu}(y-x)^{\nu}=(t, \mathbf{0})$, with $t<0$. Plot the real and imaginary part of the D as a function of t for $m=1 \mathrm{MeV}$.
(c) Now consider space-like displacements $(x-y)^{2}=-r^{2}<0$. Peskin, Problem 2.3. Plot the real and imaginary part of the D as a function of r for $m=1 \mathrm{MeV}$.

2. Green's functions for Feynman and Retarded propagators.

(a) Show that the Feynman propagator

$$
\begin{equation*}
D_{F}(x-y) \equiv\langle\Omega| T\{\phi(x) \phi(y)\}|\Omega\rangle \tag{3}
\end{equation*}
$$

and the retarded propagator

$$
\begin{equation*}
D_{R}(x-y) \equiv\langle\Omega|[\phi(x), \phi(y)]|\Omega\rangle \theta\left(x^{0}-y^{0}\right) \tag{4}
\end{equation*}
$$

are Green's functions for the operator $\left(-\partial_{\mu} \partial^{\mu}-m^{2}\right)$ satisfying

$$
\begin{equation*}
\left(-\partial_{\mu} \partial^{\mu}-m^{2}\right) D_{F / R}(x-y)=i \delta\left(x^{\mu}-y^{\mu}\right) \tag{5}
\end{equation*}
$$

(b) Show that for the free field theory

$$
\begin{equation*}
\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}+i \epsilon} e^{-i p \cdot(x-y)}=D_{F}(x-y) \tag{6}
\end{equation*}
$$

with $\epsilon \rightarrow 0^{+}$and where p^{μ} in the four momentum integral is not necessarily onshell.
(c) Rewrite

$$
\begin{gather*}
\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}+i \epsilon} e^{i p \cdot(y-x)}= \\
\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{\left(p^{0}-\sqrt{\mathbf{p}^{2}+m^{2}}+i \epsilon^{\prime} \operatorname{sign}\left(\mathrm{p}^{0}\right)\right)\left(p^{0}+\sqrt{\mathbf{p}^{2}+m^{2}}+i \epsilon^{\prime} \operatorname{sign}\left(\mathrm{p}^{0}\right)\right)} e^{-i p \cdot(x-y)}= \\
\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{\left(p^{0}\left(i+i \epsilon^{\prime \prime}\right)-\sqrt{\mathbf{p}^{2}+m^{2}}\right)\left(p^{0}\left(1+i \epsilon^{\prime \prime}\right)+\sqrt{\mathbf{p}^{2}+m^{2}}\right)} e^{-i p \cdot(x-y)} \tag{7}
\end{gather*}
$$

with $\epsilon, \epsilon^{\prime}, \epsilon^{\prime \prime} \rightarrow 0^{+}$. The last form illustrates that the Feynman propagator can be obtained by integrating p^{0} over a contour in the complex plane at a small positive angle, ie. from $(-\infty(1+i \epsilon), \infty(1+i \epsilon))$ rather than from $(-\infty, \infty)$.
(d) Choose a $i \epsilon$ prescription in momentum space representation of propagator to obtain the retarded propagator. (Hint: Try modifying the signs of $i \epsilon^{\prime}$ on the right hand side of Eq. 7).
(e) Now consider Eq. 2. Write $D(x-y)$ in terms of the real part of the Feynman propagator. (Hint: $\frac{1}{x \pm i \epsilon}=\mp i \pi \delta(x)+\mathcal{P}\left[\frac{1}{x}\right]$.)

