Problem Set 3 (due Feb 23, 2014)

1. Correlation function for time-like and space-like separations (Feel free to use *Mathematica*. Another useful resource is *Gradsteyn and Ryzhik*.) We define

$$D(x-y) = \langle \Omega | \phi(x)\phi(y) | \Omega \rangle.$$
(1)

Show that in non-interacting scalar field theory

$$D(x-y) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}} e^{-ip \cdot (x-y)} \quad , \tag{2}$$

where p^{μ} is on shell. We saw that $D(x - y) = D(\Lambda(x - y))$. Let us restrict to orthochronous lorentz transformations Λ , which do not change the sign of $y^0 - x^0$ for time-like y - x. (For space-like y - x the sign may or may not change.) Consider three cases.

- (a) First consider $(x y)^2 = t^2 > 0$, with $(y^0 x^0) > 0$. Then we can choose Λ to go to a frame where $\Lambda^{\mu}_{\nu}(y x)^{\nu} = (t, \mathbf{0})$, with t > 0. Express the value of D in terms of Bessel functions. Plot the real and imaginary part of the D as a function of t for m = 1MeV. How is the plot modified if $m \neq 1$.
- (b) Now consider $(x-y)^2 = t^2 > 0$, with $(y^0 x^0) < 0$. Then we can choose Λ to go to a frame where $\Lambda^{\mu}_{\nu}(y-x)^{\nu} = (t, \mathbf{0})$, with t < 0. Plot the real and imaginary part of the D as a function of t for m = 1MeV.
- (c) Now consider space-like displacements $(x y)^2 = -r^2 < 0$. Peskin, Problem 2.3. Plot the real and imaginary part of the *D* as a function of *r* for m = 1MeV.

2. Green's functions for Feynman and Retarded propagators.

(a) Show that the Feynman propagator

$$D_F(x-y) \equiv \langle \Omega | T\{\phi(x)\phi(y)\} | \Omega \rangle \tag{3}$$

and the retarded propagator

$$D_R(x-y) \equiv \langle \Omega | [\phi(x), \phi(y)] | \Omega \rangle \theta(x^0 - y^0)$$
(4)

are Green's functions for the operator $(-\partial_{\mu}\partial^{\mu} - m^2)$ satisfying

$$(-\partial_{\mu}\partial^{\mu} - m^2)D_{F/R}(x - y) = i\delta(x^{\mu} - y^{\mu})$$
(5)

(b) Show that for the free field theory

$$\int \frac{d^4p}{(2\pi)^4} \frac{i}{p^2 - m^2 + i\epsilon} e^{-ip \cdot (x-y)} = D_F(x-y) , \qquad (6)$$

with $\epsilon \to 0^+$ and where p^{μ} in the four momentum integral is not necessarily onshell.

(c) Rewrite

$$\int \frac{d^4p}{(2\pi)^4} \frac{i}{p^2 - m^2 + i\epsilon} e^{-ip \cdot (x-y)} = \int \frac{d^4p}{(2\pi)^4} \frac{i}{(p^0 - \sqrt{\mathbf{p}^2 + m^2} + i\epsilon' \operatorname{sign}(\mathbf{p}^0))(p^0 + \sqrt{\mathbf{p}^2 + m^2} + i\epsilon' \operatorname{sign}(\mathbf{p}^0))} e^{-ip \cdot (x-y)} = \int \frac{d^4p}{(2\pi)^4} \frac{i}{(p^0(1 + i\epsilon'') - \sqrt{\mathbf{p}^2 + m^2})(p^0(1 + i\epsilon'') + \sqrt{\mathbf{p}^2 + m^2})} e^{-ip \cdot (x-y)}$$
(7)

with ϵ , ϵ' , $\epsilon'' \to 0^+$. The last form illustrates that the Feynman propagator can be obtained by integrating p^0 over a contour in the complex plane at a small positive angle, i.e. from $(-\infty(1+i\epsilon), \infty(1+i\epsilon))$ rather than from $(-\infty, \infty)$.

(d) Choose a $i\epsilon$ prescription in momentum space representation of propagator to obtain the retarded propagator.

3. Correlation functions for the complex scalar field

(a) Using the expression for the quantized complex scalar field compute the following retarded correlation functions

$$\langle \Omega | [\Phi(x), \Phi(y)] | \Omega \rangle \Theta(x^0 - y^0) \langle \Omega | [\Phi^{\dagger}(x), \Phi^{\dagger}(y)] | \Omega \rangle \Theta(x^0 - y^0) \langle \Omega | [\Phi(x), \Phi^{\dagger}(y)] | \Omega \rangle \Theta(x^0 - y^0)$$

$$(8)$$

(b) Now consider $\langle \Omega | [\Phi(x), \Phi^{\dagger}(y)] | \Omega \rangle \Theta(x^0 - y^0)$. Suppose the masses of the particle and antiparticle are different. Is the retarded correlation function sensible?

4. Correlation functions in a non-relativistic theory

- (a) Write down the Lagrangian for a non-interacting non-relativistic complex field.
- (b) Write down the retarded correlation function $\langle \Omega | [\Psi(x), \Psi^{\dagger}(y)] | \Omega \rangle \Theta(x^0 y^0)$ as an integral over four momentum. Choose the $i\epsilon$ prescription so that the correlation function is zero for $x^0 < y^0$. Is the retarded correlation function causal?