Problem Set 4 (due Mar 9, 2015)

1. The interaction picture. Problem 9.5 Srednicki

2. Path integrals.

(a) Assuming M is a symmetric, positive definite matrix and $q=q_{1}, \cdots q_{n} \in R^{N}$, show that

$$
\begin{equation*}
\int \Pi d q_{i} e^{-i q^{T} M(1-i \epsilon) q+i J^{T} q+i q^{T} J}=\sqrt{\left(\frac{\pi}{i}\right)^{n}} \frac{1}{\sqrt{\operatorname{detM}(1-\mathrm{i} \epsilon)}} \tag{1}
\end{equation*}
$$

(b) Assuming M is a hermitian, positive definite matrix and $q=q_{1}, \cdots q_{n} \in C^{N}$, show that

$$
\begin{equation*}
\int \Pi d q_{i}^{*} d q_{i} e^{-i q^{\dagger} M(1-i \epsilon) q+i J^{\dagger} q+i q^{\dagger} J}=\left(\frac{\pi}{i}\right)^{n} \frac{1}{\operatorname{det} \mathrm{M}(1-\mathrm{i} \epsilon)} \tag{2}
\end{equation*}
$$

(c) Find

$$
\begin{equation*}
\left\langle x_{f} t_{f} \mid x_{i} t_{i}\right\rangle \tag{3}
\end{equation*}
$$

for the Harmonic oscillator. Show that you obtain expected results for $H \rightarrow$ $H(1-i \epsilon)$ and $t_{i} \rightarrow-\infty$ and $t_{f} \rightarrow+\infty$.
(d) Evaluate

$$
\begin{equation*}
\langle 0 \infty \mid 0-\infty\rangle \tag{4}
\end{equation*}
$$

for the scalar field theory in the presence of an external current J.

