Problem Set 5 (due Mar 16, 2015)

1. Fun with Feynman diagrams Write the expressions for the 12 Feynman diagrams for (use correlation function Feynman rules) given below for the ϕ^{4} theory. Give results both in position and momentum space. Introduce appropriate symbols for external and internal space-time locations (four momenta for momentum space) and explicitly show the symmetry factors. You can write the results in terms of the position space Feynman propagator D_{F} and the momentum space propagator $\frac{i}{p^{2}-m^{2}+i \epsilon}$ (Peskin conventions) but give the correct arguments and appropriate integrals. You need not evaluate the integrals

Figure 1: Feynman Diagrams

2. (Writing Feynman rules) In a previous problem set you quantized the free theory for the complex scalar field. Now consider the theory with interactions

$$
\begin{align*}
\mathcal{L} & =\partial_{\mu} \Phi^{*} \partial^{\mu} \Phi-M_{\Phi}^{2} \Phi^{*} \Phi \\
& -\frac{\lambda_{3}}{1!}\left[\Phi^{*} \Phi^{2}+h . c\right]-\frac{\lambda_{4}}{y!}\left[\Phi \Phi^{*}\right]^{2} . \tag{1}
\end{align*}
$$

(a) If the interacting largangian is to be invariant under phase transformations of Φ, what is the allowed value of λ_{3}. From now on assume that λ_{3} is this value
(b) Rescale and shift the fields appropriately to rewrite the lagrangian in terms of renormalized fields and constants. Do you need to shift Φ ?
(c) Separate out the free renormalized lagrangian, the interaction terms and the conterterms and give the Feynman rules
(d) What is the convenient choice for y so that the symmetry factor is given by the number of automorphisms of the Feynman diagram
(e) Give renormalization conditions for the one-point correlators, $\langle\Phi\rangle,\left\langle\Phi^{*}\right\rangle$, and the two point correlators, $\langle\Phi \Phi\rangle,\left\langle\Phi \Phi^{*}\right\rangle,\left\langle\Phi^{*} \Phi^{*}\right\rangle$

