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Hamiltonian Formulation of QM

• An isolated quantum system at time t: |ψ(t)>, a normalized vector in an abstract Hilbert 
space over complex no.s. 


 

• Any observable (measurable quantity): a linear Hermitian operator in this Hilbert space. With a 
choice of basis they can be rep. by matrices.  

• A special operator, the Hamiltonian, generates the time evolution of the state through the 
Schrodinger eqn.  

i@t| (t)i = H| (t)i

How do we write down the Hamiltonian operator?

• Elevate the co-ordinates and momenta to operators and replace the Poisson Brackets 


      by commutators to obtain the QM Hamiltonian

• Write down the Hamiltonian of the system assuming classical mechanics

defines the co-ordinates and conjugate momenta



Lagrangian formulation of CM
In Classical Mechanics, one defines a quantity called action for every trajectory of a system. 

q

t

S =

Z
dtL(q, q̇, t) L(q, q̇, t) = 1

2
mq̇2 � V (q)

for a particle in a potential

The actual path taken by the classical system is the path of 


extremal action, which leads to the Euler Lagrange eqn.s

�L
�q

� d

dt

✓
�L
�q̇

◆
= 0

Advantages of Lagrangian formalism: 

• Easier to deal with constraints/ generalized co-ordinates. 


!

• The form of Euler Lagrange equations is invariant under co-ordinate transforms    


!
• Easier to generalize to Relativistic (Lorentz invariant) situations.


!

• Standard way to generalize to classical field theories via Lagrangian density (e.g. 
Electromagnetism)

• New formulation of QM, along Lagrangian formalism ----- the Path Integral formalism



QM and time evolution operator

• Let us start with the familiar Schrodinger eqn. for QM  i@t| (t)i = H| (t)i
(For the moment, stick to time indep. H)

| (t)i = Û(t, 0)| (0)i = e�iĤt| (0)iFormal Soln.:

Time-Evolution Operator

If the matrix elements of U are known, the QM problem is solved.

 (x, t) = hx| (t)i = hx|Û(t, 0)| (0)i =
Z

d

3
x

0hx|Û(t, 0)|x0ihx0| (0)i =

Z
d

3
x

0hx|Û(t, 0)|x0i (x0
, 0)

 (x, t) = i

Z
d

3
x

0
G(x, t;x0

, t

0) (x0
, t

0)More generally: G(x, t;x0
, t

0) = �ihx|U(t, t0)|x0i

Green’s fn/ Propagator: propagates the influence of things at x’ across time to x 



Properties of U / G
•For time-translation invariant systems

G(x, t;x0
, t

0) = G(x, x0
, t� t

0)

•If the system is homogeneous in space G(x, t;x0
, t

0) = G(x� x

0
, t� t

0)

•The propagator satisfies the equation (i@t �H)G(t� t0) = �(t� t0) This is why it is


 called Green’s fn

Û(t, t0) = Û(t, t1)Û(t1, t0)Breaking up the time evolution operator: t < t1 < t0

ti

tf= ti+Nε

ε

ti+ε

ti+2ε

ti+5ε

ti+(N-1)ε

Break up the time interval (tf-ti) into 


a large number N of small intervals of 


width ε, tf=ti+N ε



!
In the end we will take N --> ∞, ε--> 0,



so that N ε= tf-ti is const

•One could have taken any complete basis to define G(↵, t;�, t0) = �ih↵|U(t, t0)|�i

G(~k, t� t0) =

Z
d3rei

~k·rG(~r, t� t0)E.g.:

Û(tf , ti) = Û [tf , ti + (N � 1)✏]Û [ti + (N � 1)✏, ti + (N � 2)✏]...Û [ti + 2✏, ti + ✏]Û [ti + ✏, ti]



Matrix Elements of U
Let us now consider the matrix element of U(tf,ti) between a complete basis set.

ti

tf= ti+Nε

ε

ti+ε

ti+2ε

ti+5ε

ti+(N-1)ε
For concreteness, we choose x basis,


but this can be done with any basis.

We introduce identity operators between each U in the product above

Û(xf , tf ;xi, ti) =

Z
dx1dx2..dxN�1 [

hxf |Û(tf , ti+(N�1)✏)|xN�1ihxN�1|Û(ti+(N�1)✏, ti+(N�2)✏)|xN�2ihxN�2|...

|x2ihx2|Û(ti + 2✏, ti + ✏)|x1ihx1|Û(ti + ✏, ti)|xii]

We have reduced the matrix element to a product over matrix elements of infinitesimal time 


evolution operators. The price we pay is a large no. of integrals over intermediate co-ord.s

U(xf,tf;xi,ti) is the probability amplitude for the particle to propagate from xi at ti to xf at tf

U(xf , tf ;xi, ti) = hxf |Û [tf , ti + (N � 1)✏]Û [ti + (N � 1)✏, ti + (N � 2)✏]...Û [ti + 2✏, ti + ✏]Û [ti + ✏, ti]|xii



Matrix Elements of infinitesimal U

hxk+1|Û(ti + (k + 1)✏, ti + k✏)|xki= hxk+1|e�iĤ(p̂,x̂)✏|xki

Then the p operator can act on the bra to give the eigenvalue p and the x operators can 


act on the ket to give x eigenvalues. We get rid of operators in favour of no.s

This would be easy to evaluate if all the p operators appeared to the left of all x operators
Such an operator where all p operators appear to the left of all x operators is called a 


normal ordered operator.

However, with H =
p̂2

2m
+ V (x̂) e�iH✏ is not normal ordered

e

�iH✏ = 1�i✏

h
p̂2

2m + V (x̂)
i
� ✏2

2

⇣
p̂2

2m

⌘2
+ V

2(x̂) + p̂2

2mV (x̂) + V (x̂) p̂2

2m

�
+ ...

Not very convenient since p --> ∇ in the exponential.

Introduce identity with momentum states
Z 1

�1

dp

2⇡
|pihp| = 1



Normal Ordering and Errors

e

�iH✏ = 1�i✏

h
p̂2

2m + V (x̂)
i
� ✏2

2

⇣
p̂2

2m

⌘2
+ V

2(x̂) + p̂2

2mV (x̂) + V (x̂) p̂2

2m

�
+ ...

So, in calculating each matrix element, the leading error that we are making  is O(ε2).

Since N matrix elements are being calculated and multiplied, the leading error in matrix element 
of U is O(Nε2).

V (x̂)
p̂

2

2m
=

p̂

2

2m
V (x̂) +


V (x̂),

p̂

2

2m

�
Now

V

0(x̂)
p̂

m

[x̂, p̂] = iV

0(x̂)
p̂

m

What happens if we simply replace the infinitesimal evolution operator by its normal ordered form?

e

�iĤ✏ =
1X

n=0

(�i✏)n

n!

✓
p̂

2

2m
+ V (x̂)

◆n

: e�iĤ✏ :=
1X

n=0

(�i✏)n

n!

nX

k=0

n!

n� k!k!

✓
p̂

2

2m

◆k

[V (x̂)]n�k

The leading order correction is O(ε2): �i✏

2

2m

@V

@

x

(x̂)p̂ Assumption: This and higher order


               terms are not singular



Normal Ordering and Errors

In the end we want to take the limit: N --> ∞, ε--> 0, so that N ε= tf-ti is const.



i.e. Nε2 --> 0 in this limit. So the error due to normal ordering vanishes in this limit.

U(xf , tf ;xi, ti) =

Z
dx1dx2..dxN�1U [xf , tf ;xN�1, tN�1]U [xN�1, tN�1;xN�2, tN�2]...U [x2, t2;x1, t1]U [x1, t1;xi, ti]

We want to calculate

We are replacing this by
Z

dx1dx2..dxN�1{: U [xf , tf ;xN�1, tN�1] : +O(✏2)}{: U [xN�1, tN�1;xN�2, tN�2] : +O(✏2)}...

...{: U [x2, t2;x1, t1] : +O(✏2)}{: U [x1, t1;xi, ti] : +O(✏2)}

Define tm =ti+mε,     tN =tf   

hp| : e�iĤ(x̂,p̂)✏ : |xi = e

�iH(x,p)✏hp|xiOnce we normal order, we can simply replace

and work with the real numbers x and p

The leading error in calculating matrix element of U is thus O(Nε2).

(Implicit assumption : integrals involved in calculating infinitesimal U do not diverge)



Matrix Elements of infinitesimal U

=

Z
dpk+1e

ipk+1·xk+1hpk+1|e�iĤ(p̂,x̂)✏|xki

=

Z
dpk+1e

ipk+1·(xk+1�xk)e�iH(pk+1,xk)✏

Introduce identity with p states

=

Z
dpk+1e

ipk+1·xk+1hpk+1| : e�iĤ(p̂,x̂)✏ : |xki Normal Ordering

=

Z
dpk+1e

ipk+1·xk+1
e

�iH(pk+1,xk)✏hpk+1|xki
Note that in H, p is with index k+1


x is with index k

=

Z
dpk+1e

i✏
h
p
k+1·

(x
k+1�x

k

)

✏

�H(p
k+1,xk

)
i Exponent looks like pẋ -H = L



where L is the classical Lagrangian


for the infinitesimal path



Continuum Limit and Path Integrals in Phase Space
We have

U(xf , tf ;xi, ti) =

Z
dx1dx2..dxN�1

N�1Y

n=0

< xn+1|e�i✏Ĥ(x̂,p̂)|xni x0 = xi,     xN=xf

N-1   x integrals

N   matrix elements

The exponents add up to give the action S = ∫ dt L in the final exponent.

Now take the continuum limit, i.e. N --> ∞, ε--> 0, so that Nε= tf-ti = constant . 



In this limit, (xk+1-xk)/ε=ẋ(t), and ε=dt.  

dt

Lagrangian L
N-1   x integrals N   p integrals

U(xf , tf ;xi, ti) =

Z
dx1dp1

2⇡

Z
dx2dp2

2⇡
..

Z
dxN�1dpN�1

2⇡

Z
dpN

2⇡

N�1Y

n=0

e

i✏
h
p
n+1·

x

n+1�x

n

✏

�H(x
n

,p
n+1)

i



Continuum Limit and Path Integrals in Phase Space
We have finally

Each phase space trajectory which starts and ends at definite co-ordinates xi and 
xf contribute a pure phase to the propagator between these positions.


!
The phase is the classical action along that trajectory.


!
The phase space trajectories can reach the final point with any momenta ——> 
additional momentum integral 

If we remove the additional p integral, the rest of the integrals involve summing over all possible 


phase space trajectories.

U(xf , tf ;xi, ti) =

Z
dpN

2⇡
D[x]D[p]ei

R tf
ti

dt[pẋ�H(x,p)]

=

Z
D

0
[x]D[p]ei

R tf
ti

dt[pẋ�H(x,p)]

U(xf , tf ;xi, ti) =
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2⇡
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Z
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2⇡
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Z
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Z
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2⇡
e

i
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=

Z
dpk+1e

i✏
h
p
k+1·

(x
k+1�x

k

)

✏

�H(p
k+1,xk

)
i

Exponent looks like pẋ -H = L. However, we need to integrate p out to get L=L(x,ẋ,t)

At this point, we assume that H =p2/2m+V(x). So the p-integral is a Fresnel integral.

Z 1

�1
dpk+1e

i✏


p
k+1·

(x
k+1�x

k

)

✏

�
p

2
k+1
2m

�

Path Integrals in Config. Space



Z 1

�1
dxe

�ax

2
/2�bx = e

b

2
/2a

r
2⇡

a

Complete the square:

 1-D Gaussian integral:
Z 1

�1
dxe

�ax

2
/2 =

r
2⇡

a

Re[a] >0

Gaussian and Fresnel Integrals.

Z 1

�1
dx1

Z 1

�1
dx2..

Z 1

�1
dx

N

e

�
P

i aix
2
i /2 =

(2⇡)N/2

pQ
i

a

i

Multidimensional Gaussian integral:

To see this, work with linear combination of xi


which diagonalizes A. The Jacobian for this 


transformation is 1. 

In these co-ord, exponent —> -(1/2) ∑λiqi2 . Finally note that Det[A]= ∏λi

Z 1
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dx1
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dx2..

Z 1

�1
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N

e

� 1
2

P
ij xiAijxj =
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p
DetA

Complete the square:
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N

e
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2

P
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P
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p
DetA
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1
2

P
ij JiA

�1
ij Jj



1D Fresnel Integral:
Z 1

�1
dxe

iax

2
/2 =

r
2⇡i

a

Gaussian and Fresnel Integrals.
Z 1

�1
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i(ax2
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�ib

2
/2a

r
2⇡i

a

Complete the square:

Z 1

�1
dx1

Z 1

�1
dx2..

Z 1

�1
dx

N

e

i
2

P
ij xiAijxj =

(2⇡i)N/2

p
DetA

Multidimensional Fresnel Integral:
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At this point, we assume that H =p2/2m+V(x). So the p-integral is a Fresnel integral.

Z 1

�1
dpk+1e

i✏


p
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k
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�
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2
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So the Fresnel integral in the matrix element is evaluated as

Path Integrals in Config. Space

Z
dpk+1

2⇡
e
i✏


p
k+1·

(x
k+1�x
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✏

�
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2
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i✏
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k
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r
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Hence: hxk+1|e�iĤ✏|xki =
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m
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
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✏

2 �V (x
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�

Considering the product of all the matrix elements (remember there are N  p-integrals)

U(x
f

, t

f

;x
i

, t

i
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⇣

m

2⇡i✏

⌘
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Z
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k

e

i✏


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✏

2 �V (x
k

)

�

Defining D[x] =
N�1Y
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dxk

⇣
m
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U(x
f
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f

;x
i

, t

i

) =
⇣
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⌘1/2
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i✏
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
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✏

2 �V (x
k
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Continuum Limit and Path Integrals

x

tti t1 t2 tf-1tN-1-2

Let us first relabel x1=x(t1), x2=x(t2),... xk=x(tk), etc.


!
A specific sequence (x1,x2,....xN-1) defines a discretized version


of a path in time with fixed endpoints (xi,ti) and (xf,tf).

Now as N --> ∞, ε--> 0, these become continuous paths. In this limit, (xk+1-xk)/ε=ẋ(t),



and ε=dt.  

The integral over all the intermediate co-ord. is equivalent to a sum over all discretized paths.

To calculate the amplitude of the particle traveling from xi to xf, we must sum over the 
amplitude contribution from all paths.

U(x
f

, t

f

;x
i

, t

i

) =
⇣

m

2⇡i✏

⌘
N/2 N�1Y

k=1

Z
dx

k

e

i✏


m

2

(x
k+1�x

k

)2

✏

2 �V (x
k

)

�

S[x(t)] =

Z tf

ti

dt


1

2
mẋ

2(t)� V (x(t))

�
=

Z tf

ti

dtL[x(t), ẋ(t)]

The prob. amplitude of a particle


traveling from xi to xf through any 
path is equal in magnitude and has 


a phase proportional to the classical 


action along the path.  

U(x
f

, t

f

;x
i

, t

i

) =

✓
mN

2⇡i(t
f

� t

i

)

◆1/2 Z
D[x(t)]eiS[x(t)]



Path Integral Formulation of QM
•The fundamental quantity in QM is the probability amplitude for a process to occur, e.g. prob. 


  amplitude for a particle to move from xi at time ti to xf at time tf.

•The probability amplitude for the process to occur along different routes (defined by the states


  of the system at intermediate times), has same magnitude. E.g. prob amplitude of the particle 


  moving through different paths has same magnitude.

•The probability amplitude for the process to occur along a definite route has a phase which is 
given by the classical action along that route. The action (like the Hamiltonian in the usual 
formulation of QM) is the external input defining the system.  E.g. For a particle moving in an 
external potential S=∫dt (1/2) m ẋ2 -V(x)

•To get the probability amplitude of a process, the probability amplitudes for occurence through 
different routes has to be added. For the particle, this takes the form of a path integral or a sum 


over all paths. The modulus square of the total prob. amplitude is the desired probability.

•If additional information about intermediate states of the system is available (say through 
measurements at intermediate times), the routes have to be restricted accordingly. E.g. if it is 
known through measurement that the particle is at xk at intermediate time tk, one should sum up 
prob. ampl. contributions from only those paths which pass through (xk,tk)



Path Integrals and Quantum Mechanics
Intuitive picture of  contribution of many paths. Easiest way to explain quantum interference 


(say double slit experiment) and its vanishing on intermediate measurements. 

Usual benefits of Lagrangians --- easier to treat non-local dynamics.


                                    --- easier to generalize to relativistic situations 


                                    --- generalizes to field theories.

Close relation to partition function in statistical mechanics ---- imaginary time path (functional) 


integrals and partition function.

Easier to take the classical limit, which corresponds to the case where only the classical path 


of extremal action contributes. Starting point of small quantum fluctuations approximations.

Starting point for several approximations ---- perturbation theory and Feynman diagrams,


semi classical (WKB like) approximations, instantons etc. 

We will soon generalize this formalism for QM of many particles and from there to description


of relativistic quantum systems.. 


