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Recap of Last Class

• Wick’s Theorem and n-point correlators in imaginary time

• Perturbation theory for Z with x4 potential.

• Feynman diagrams and Feynman rules

• Z upto 3rd order in pert. theory

• Connected and Disconnected Diagrams: Expansion for Free Energy



Linked Cluster Theorem and Replica Trick
We want to show that if we work out a perturbation series for F rather than Z, the contribution 


of disconnected diagrams drop out at each order.

Zn = en lnZ = 1 + n lnZ +
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Now consider the following way of calculating Zn :

Consider the partition function for n identical copies of the system. The copies do not talk to 


each other.

(Z)n =
Y

�

Z
D[x�(⌧)]e�SE [x�(⌧)] index σ denotes the copy and runs from 1 — n

Now, one can write down the perturbation expansion for (Z/Z0)n in terms of Feynman diagrams


including all the n xσ variables.

It is clear that the diagrams whose contribution is linear in n would finally contribute to 


the perturbation expansion for F= (1/β) ln Z.



Linked Cluster Theorem and Replica Trick
Constructing Feynman Diagrams for (Z/Z0)n

𝜏 𝜏’σ

G�(⌧, ⌧
0
) Each line (2-pt fn) 



carries a σ index -g/4
σ

σ

σ

σ

The 4 lines coming 


out of a vertex


must carry the 


same σ index

Remaining rules are same as for (Z/Z0)

#1) A connected diagram has all lines with same σ index

𝜏1 𝜏2

σσ

σ

σ

#3) On top of the usual “multiplicities” or “Symmetry 


     factors” of these diagrams for (Z/Z0), each cluster


      has a σ index, which gives a factor of n.

#2) Consider a diagram with nc disconnected clusters

𝜏1 𝜏2𝜏3

σ2σ1

#4) So a diagram with nc clusters have an addl. symmetry factor of nnc

Terms linear in n has nc = 1; i.e. only connected clusters contribute to ln Z
Linked Cluster Theorem



Perturbation Theory for Free Energy F
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How do we evaluate these integrals (diagrams) ?

Since all the integrals involve the 2-pt. function in the Gaussian theory, focus on them



The 2-point function in Gaussian theory
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Time independent system

Work with the Fourier Transform, G-1 is diagonal in that basis
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Fourier Transforms in imaginary time formalism
x(𝜏) is a periodic function with period β( Unlike qnt. fluc. x is not zero at endpoints)
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The Fourier transform would involve discrete frequencies ωm = 2𝜋m/β ——— m = 0, ±1, ±2, …..

These are called Bosonic Matsubara frequencies
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Perturbative corrections to F

The 2-point fn (in Matsubara frequencies) is given by G(i!m) = � 1

m

1
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With this knowledge we can now start evaluating the perturbation correction to the Free Energy
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Perturbative corrections to F 1st order correction
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Evaluating Matsubara sums:

The Bose distribution function nB(!) =
1

e�! � 1
has a simple pole at the Matsubara frequencies

z0 = iωl = 2𝜋 i l/β ——— l = 0, ±1, ±2, …..

Expanding the denominator near z0

e�z � 1 = e�z0e�(z�z0) � 1 = 1 + �(z � z0) + ...� 1 = �(z � z0) + ...

So the residue at the pole is 1/β

Now Use Cauchy’s Residue Theorem in reverse



Perturbative corrections to F 1st order correction

where C is the contour shown, 


traversed counterclockwise
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has poles at ± ω0, with residue ±1/(2ω0)

Let us distort the contour C to the contour C1, which is a circle with radius R ——> ∞

R

C1

At large R, the integrand ~ 1/R2 , so the integral on C1 vanishes

However, in distorting the contour we have added 2 singularities of the fn (the poles), which 


lie within C1, but not within C.
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Perturbative corrections to F 1st order correction
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Going back to real time:

Exponentiate to get Z(1)/ Z0

Now use your old dictionary β —> i (tf-ti)to go back to real time.

We will leave calculation of 2nd order corrections for HW



Wick Rotation to real Frequencies
We could, alternately, have worked in real time to evaluate the correction 


(after going to imag. time and using Wick’s theorem).

The following rule lets you obtain the time-ordered 2-point function in real frequencies:
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To get to the real freq, rotate the plane clockwise

The singularities of the 2 pt. fn lies on the real axis.


In case of H.O. these are poles. In a more general case


this might be branch cuts.



i ωl

ω

G(!) = � 1

2m!0


1

! � !0 + i⌘
� 1

! + !0 � i⌘

�

The poles are shifted to the -ve half-plane


 for ω > 0 and to +ve half plane for ω<0

ω



Perturbation Expansion for 2-point Fn.s
Suppose we are interested in directly calculating the 2 pt fn for the action with x4 potential.

Can we develop a perturbation expansion for this quantity directly?
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Let us first work with the numerator



Perturbation Expansion for 2-point Fn.s
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Once again, we can use Wick’s theorem to write this term as possible contractions of 


2 pt fn.s in the Gaussian Theory. 

To keep Track of the terms, we can again use Feynman diagrams



Perturbation Expansion for 2-point Fn.s
Feynman Diagrams upto 1st order

𝜏’

𝜏1 𝜏2

𝜏1 𝜏2𝜏’

Disconnected Diagram Connected Diagram

This is G0 X diagram for Z

cancels with the factor of Z in the denominator

So the thermal expectation value is given by connected correlations, i.e. only connected diagrams


contribute. Define interacting 2 pt fn as G and the gaussian 2 pt fn as G0
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