
Advanced Quantum Mechanics

Lecture #25

Path Integrals and QM

Rajdeep Sensarma


!
sensarma@theory.tifr.res.in



Recap of Last Class

• Functional Integrals for many body systems

• Many Body Coherent States for Bosons

• Deriving the functional Integral

• Repulsive Spin 0 Bose gas



Imaginary time and Z
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We can once again follow the steps we took in writing the path integral for a particle in imaginary


time. The matrix element of e-βH can itself be written as a functional integral over field 

configurations at intermediate (imaginary) time points.
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The exponential term from the definition of Z cancels the exponential term coming from the 


functional integral involving the fields at the final time.
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The partition fn is a functional integral over periodic field config. with each field config 


contributing a factor of e-S

If you are interested in ground state properties, you can set β —> ∞ at the end of the calc.



Stationary Phase Approximation

I(l) =

Z 1

�1
dte�`f(t)Asymptotic expansion of in powers of 1/ l (useful for large l)

= e�`f0

s
2⇡

`f
00
0

Z 1

�1

d⌧p
2⇡

e
� ⌧2

2 �
P1

n=3
⌧n

n!

f
(n)
0

`n/2�1(f
00
0 )n/2f0=f(t0), where df/dt=0

f(n)0=dn/dtn f(t0)

= e�`f0

s
2⇡

`f
00
0

Z 1

�1

d⌧p
2⇡

e�
⌧2

2

2

41�
1X

n=3

⌧n

n!

f (n)
0

`n/2�1(f
00
0 )

n/2
+

1

2

 1X

n=3

⌧n

n!

f (n)
0

`n/2�1(f
00
0 )

n/2

!2

+ ...

3

5

Co-eff of 𝜏n is denoted by a vertex with n lines coming out of it.


Note there will be vertices with different no. of lines.
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These are integrals of powers of 𝜏 over a Gaussian measure. Use Feynman Diagrams
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Stationary Phase Approximation
Diagrams: draw any no. of vertices (of any degree n) and connect all the lines. In addition, a diagram 
with N vertices have (-1)N/N! , coming from expansion of the exponential.

Stationary phase approx.:


Group all diagrams having same power of (1/l) . 


!
Mixes order in perturbation theory (i.e. diagrams 


at a specific order has diff. no. of vertices)

It is clear that odd powers of 𝜏 do not contribute —— no way to close the lines 

To lowest order in 1/l 
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Stationary Phase Approximation
Integrals of Complex variables: For z=z0, f’(z0) = 0

f(z) is an analytic fn and

Choose the contour passing through z0, which keeps Im f[z] constant.


Otherwise large oscillations wash out the integral
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The directions φ=-φ0/2  and φ= -φ0/2 + 𝜋/2 keep Im f constant. This also correspond to 



maximum +ve and -ve curvature for Re f . Contour C is chosen along the path of steepest


descent.

Cauchy’s Integral formula —> z0 can only be a saddle point of Re f[z] 

The real integral along this contour is evaluated as the asymptotic expansion shown before.



Stationary Phase Approx.: Path Integrals

A path integral is nothing but multiple integrals 
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Imaginary time Path Integral
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Stationary Phase Approx.: Path Integrals
Large l as hbar —> 0 —— Classical Limit !!

Remember that the path integral is actually a multiple integral and S is a fn of many x variables


(one for each time point t). So we have to find the minimum wrt each of the x variables.

Differentiation wrt all the x variables ——> functional derivative wrt. paths.

The saddle point is nothing but the classical path
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and the corresponding path integral is just the exponential of the saddle point action.



Stationary Phase Approx.: Path Integrals
Expanding around the saddle point
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From this it is evident why quadratic Lagrangians have special properties.

In this sense they are often called “classical” —— terms with +ve powers of hbar are absent


in the stationary phase expansion.

The leading order correction to the classical contribution is a Harmonic oscillator with the 


frequency of the oscillator set by the small oscillation frequencies around the classical path.



Stationary Phase Approx.: Functional Integrals
The partition function function for many bosons is a functional integral over field config of 


Exp( -SE). This is nothing but many more complex integrals, one for each space-time point.


(or one for each k and each 𝜏).

The basic idea of stationary phase approximation works in this case provided a large number


multiplying the action can be found.

For the time being, introduce fictitious l
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Stationary Phase Approximation for Bosons
Put in a fictitious (for now) factor of l in front of the action
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The Saddle Point Solution

Working in real time


�i@t �

r2

2m
� µ

�
�(x, t) + 2g|�(x, t)|2�(x, t) = 0

i@t�(x, t) =


�r2

2m
� µ

�
�(x, t) + 2g|�(x, t)|2�(x, t)

For g = 0, this is simply the single particle Schrodinger Equation

For g ≠ 0, this eqn. is called the non-linear Schrodinger Equation or Gross-Pitaevski equation


for Bosons.

Possible Solutions : 

• φ(x,t) = 0 is always a solution. This is the trivial or vacuum solution.

• φ(x,t) = φ0,  a space-time independent solution (static saddle point)
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• More non-trivial space-time dependent solutions depending on boundary conditions.

We will work with this



Gaussian Fluctuations around Saddle point

Expanding around the saddle point
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Note that for BEC, the condensate �0 = N�0

provides a large parameter N in real situations



Quadratic action and Bogoliubov Theory

S

(2) =
1

2

Z �

0
d⌧

Z
d

3
x[�⇤(x, ⌧),�(x, ⌧)]D�1(x, ⌧)


�(x, ⌧)
�

⇤(x, ⌧)

�

D�1(x, ⌧) =

"
@⌧ � r2

2m + g�

2
0 g�

2
0

g�

2
0 �@⌧ � r2

2m + g�

2
0

#

The Bogoliubov theory is obtained by retaining terms upto S(2)

Work in momentum and Matsubara frequency space 
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Quadratic action and Bogoliubov Theory
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Diagonalizing D-1 gives the quasiparticle co-ordinates of the Bogoliubov Theory

Note that D-1 has the form  (i ωm σ3 - H), where H is the quadratic Bogoliubov Hamiltonian
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This is why simple diagonalization of the Hamiltonian does not yield correct answer for the 


Bosons.



Quadratic action and Bogoliubov Theory
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To find the eigen values look at the Determinant  
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Going to real frequencies, Det D-1 has zeroes at ω = ± Ek

This means the matrix  D has  poles at ω = ± Ek
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