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Lecture #25

Path Integrals and QM



Recap of Last Class

® Functional Integrals for many body systems
® Many Body Coherent States for Bosons
® Deriving the functional Integral

® Repulsive Spin O Bose gas



Imaginary time and Z
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We can once again follow the steps we took in writing the path integral for a particle in imaginary
time. The matrix element of e- BH can itself be written as a functional integral over field

configurations at intermediate (imaginary) time points.
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where S = /t f dt/d?’x {o* (x,t)(i0)p(x,t) — H[p" (x, 1), d(x, )]}

B
S = /O ar / B {¢* (2, 7)0: 8, 7) + HIg" (2, 7), dlz, 7)]}



Imaginary time and Z
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The exponential term from the definition of Z cancels the exponential term coming from the
functional integral involving the fields at the final time.
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The partition fn is a functional integral over periodic field config. with each field config
contributing a factor of e=®

If you are interested in ground state properties, you can set 8 —> oo at the end of the calc.



Stationary Phase Approximation
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Asymptotic expansion of I(l) = / dtet7®) in powers of 1/ | (useful for large )
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These are integrals of powers of T over a Gaussian measure. Use Feynman Diagrams

. °cd L2
Define contraction T T :/ 2T =1

1 (n)
Co-eff of t"is denoted by a vertex with n lines coming out of it. X Vi = mgn/z_lo(fé,)n/z
Note there will be vertices with different no. of lines.



Stationary Phase Approximation

Diagrams: draw any no. of vertices (of any degree n) and connect all the lines. In addition, a diagram
with N vertices have (-1)N/N!, coming from expansion of the exponential.

1 (n) Stationary phase approx.:
>K Vo = E@/Q_lo(fé,)nm 1 Group all diagrams having same power of (1/1) .

Mixes order in perturbation theory (i.e. diagrams
I(0) = e~ o, | —_ ¢l sum of all connected diagrams ) at a specific order has diff. no. of vertices)

It is clear that odd powers of 7 do not contribute — no way to close the lines /<

To lowest order in 1/I [1/16/2-1] [1/1G/2-1]2
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Stationary Phase Approximation f(z) is an analytic fn and

Integrals of Complex variables: I(0) = /dz*dze—ef(z) For z=zo, f'(z0) = O

Cauchy's Integral formula — zo can only be a saddle point of Re f[Z]

Choose the contour passing through zo, which keeps Im f[z] constant.
Otherwise large oscillations wash out the integral

I(f) :e—ﬁlmf[zo]/ dse—éRef[s]
C
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Use [ (z0) = poe’®” Near zo  f(z0+ pe'®) = f(z0) + §pop2e (¢o+24)

The directions ¢=-¢o/2 and ¢ = - o/2 + /2 keep Im f constant. This also correspond to

maximum +ve and -ve curvature for Re f . Contour C is chosen along the path of steepest
descent.

The real integral along this contour is evaluated as the asymptotic expansion shown before.



Stationary Phase Approx.: Path Integrals

A path integral is nothing but multiple integrals
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Remember that /D[x(f)] ~ / dr; i.e. we have multiple integrals over exp functions

1=1

But where is the large | in this ? Bring back hbar !!
The argument of the exponential is dimensionless and S has dim. of hbar

U(zp,Tf;2i,7) = (%)1/2/'D[QZ(T)]G_—SE[;(T)] Large | as hbar —> O — Classical Limit !!



Stationary Phase Approx.: Path Integrals

Large | as hbar —> O — Classical Limit !!

Remember that the path inftegral is actually a multiple integral and S is a fn of many x variables
(one for each time point t). So we have to find the minimum wrt each of the x variables.

Differentiation wrt all the x variables —> functional derivative wrt. paths.

The saddle point is nothing but the classical path

0.5 doL 0L
= - - — O .
52(0) 0 [dt 9% o1 ) Euler Lagrange Equation
For H = p2/2m+V(x), mi = —VV(x)

and the corresponding path integral is just the exponential of the saddle point action.



Stationary Phase Approx.: Path Integrals

Expanding around the saddle point x(t) = z.(t) + Vy(t)

U(a:f tr; @ t;) = ei% /(O’tf)D[y(t)]e"’f:f dt%y(t)[ mm—V [wc(t)]}y(t)+223,o "L”{,L#V(”)[x (t)]y™ (¢)
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From this it is evident why quadratic Lagrangians have special properties.

In this sense they are often called “classical” — terms with +ve powers of hbar are absent
in the stationary phase expansion.

The leading order correction to the classical contribution is a Harmonic oscillator with the
frequency of the oscillator set by the small oscillation frequencies around the classical path.



Stationary Phase Approx.: Functional Integrals

The partition function function for many bosons is a functional integral over field config of
Exp( -Se). This is nothing but many more complex integrals, one for each space-time point.
(or one for each k and each 7).

The basic idea of stationary phase approximation works in this case provided a large number
multiplying the action can be found.

For the time being, introduce fictitious |
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Classical Field Config. is given by saddle point equations o (7)) 0 So(z.7) 0
¢(x,7) = ¢e(,7) + \/%(5¢($,7’) and we will drop the 0 for notational convenience
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Stationary Phase Approximation for Bosons

Put in a fictitious (for now) factor of | in front of the action

20= [ D) da(r))e
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The Saddle Point is obtained for a field configuration which satisfies
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The Saddle Point Solution

Working in real time
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For g = O, this is simply the single particle Schrodinger Equation

For g # O, this eqn. is called the non-linear Schrodinger Equation or Gross-Pitaevski equation
for Bosons.
Possible Solutions :
® ¢ (x,t) = 0 is always a solution. This is the trivial or vacuum solution.

® & (x,t) = do, a space-time independent solution (static saddle point)

— 1o + 29| po|*do = 0 = |¢o| = % We will work with this

® More non-trivial space-time dependent solutions depending on boundary conditions.



Gaussian Fluctuations around Saddle point
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Note that for BEC, the condensate ®¢ = N¢g

provides a large parameter N in real situations



Quadratic action and Bogoliubov Theory

The Bogoliubov theory is obtained by retaining terms upto S

5@ =1 /0 Car / d’z[¢" (z,7), (e, 7D (2, 7) [ cf((:fv?) ]
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Work in momentum and Matsubara frequency space
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Quadratic action and Bogoliubov Theory

§@ = = Z/UP *(k,iwm), ¢(—k, —iwm )] D~ (k, iwpy) [ (b*?fk’i%) ]
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Diagonalizing D! gives the quasiparticle co-ordinates of the Bogoliubov Theory
Note that D' has the form (i wm 03 - H), where H is the quadratic Bogoliubov Hamiltonian
A 1 k? 1 £ 4 gp gp ak
H=—--% —+gp+- al a_y 2m 2 ( i )
2;27% 2;( " ) gp gt gp aly

This is why simple diagonalization of the Hamiltonian does not yield correct answer for the
Bosons.



Quadratic action and Bogoliubov Theory
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To find the eigen values look at the Determinant

DetD™! = [(iwm)? — (e, + 903)* + ¢*6a) = [(iwm)? — Ef]

k2

2
E, = \/(e,l/J + g92)? — g2t = \/2g¢(2)k2/m s (%) is the Bogoliubov Spectrum

Going to real frequencies, Det D! has zeroes at w = * Ex

This means the matrix D has poles at w = * Ex

Similarly, one can show that D is diagonalized by [ Up Uk ]
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