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Schrodinger and Heisenberg Picture
Schrodinger Picture: A time evolving state in the Hilbert space with time independent operators

Time Independent Hamiltonian

Eigenbasis of Hamiltonian: | (t)i =
X

n

cn(t)|ni cn(t) = cn(0)e
�i✏ntĤ|ni = ✏n|ni

| (t)i = e�iĤt| (0)ii@t| (t)i = Ĥ| (t)i

Operators  and Expectation: A(t) = h (t)|Â| (t)i = h (0)|eiĤtÂe�iĤt| (0)i = h (0)|Â(t)| (0)i

Â(t) = eiĤtÂe�iĤt

Heisenberg Picture: A static initial state and time dependent operators

Heisenberg PictureSchrodinger Picture

| (0)i ! | (t)i | (0)i ! | (0)i

Â ! Â Â ! Â(t) = eiĤtÂe�iĤt

i@t| (t)i = Ĥ| (t)i i@tÂ(t) = [Â(t), Ĥ]

Equivalent description 

of a quantum system



Time Evolution and Propagator

 (x, t) = hx| (t)i = hx|Û(t)| (0)i =
Z

dx

0
hx|Û(t)|x

0
ihx

0
| (0)i

| (t)i = e�iĤt| (0)i Time Evolution Operator

Propagator:

Example :  Free Particle

The propagator satisfies

and hence is often called the Green’s function



Retarded and Advanced Propagator
The following propagators are useful in different contexts

Retarded or Causal Propagator:

This propagates states forward in time for t > t’

Advanced or Anti-Causal Propagator:

This propagates states backward in time for t < t’

Both the retarded and the advanced propagator satisfies the same diff. eqn., but with different

boundary conditions



Propagators in Frequency Space

Energy Eigenbasis |n>

The integral is ill defined due to oscillatory nature of the integrand

Integrals for retarded/advanced propagators can be made well defined in the following way:

Retarded Propagator:

This integral is convergent if we

replace ω —> ω+i η, with η—> 0+ 

Positive η provides exponential 

decay of integrand at large +ve t 



Advanced Propagator:

This integral is convergent if we

replace ω —> ω- i η, with η—> 0+ 

Negative η provides exponential 

decay of integrand at large -ve t 

Note that the original integral from -∞ to ∞ cannot be made well defined by either prescription

Example: Free Particle

Example: Harmonic Oscillator

Propagators in Frequency Space



Propagators in Fourier Space
Let us make sure that the prescription of adding (subtracting) a small positive imaginary part to 

the frequency gives back the correct retarded (advanced) propagator on inverse transformation

Retarded Propagator:

• For t>0, use the blue contour to do the integration. Note 

that for t > 0, the integral on the semicircle vanishes. 

• For t<0, one cannot use the blue contour. For large -ve 

imaginaryωthe integrand blows up. So, instead use the red 

contour. Since there are no singularities in the upper half-plane,

 we get 0.

• Evaluate the ω integral by contour integration.

With ω—> ω+ i η, the poles of the integrand are all in 

lower half-plane. 

⤫ ⤫⤫

ω



Propagators in Fourier Space
Let us make sure that the prescription of adding (subtracting) a small positive imaginary part to 

the frequency gives back the correct retarded (advanced) propagator on inverse transformation

• For t>0, use the blue contour to do the integration. Since 

all the singularities are in lower half-plane, we get 0

• For t<0, one cannot use the blue contour. For large -ve 

imaginaryωthe integrand blows up. So, instead use the 

red contour. Pick up residues from the poles to get

• Evaluate the ω integral by contour integration.

With ω—> ω- i η, the poles of the integrand are all in 

upper half-plane. 

⤫ ⤫⤫

ω

So in all

Advanced Propagator:



Time Dependent Hamiltonians
Where do we encounter time dependent Hamiltonians?

✦Experimental probes of systems: 


๏ When we shine light on atoms and measure absorption, we turn on the part of 

 H corresponding to light-matter interaction and switch it off. The absorption is described by 

 a time dependent Hamiltonian


๏ When we apply voltage and measure current, we are measuring the response of the system 

 to a time dependent Hamiltonian (part corresponding to energy of charges in E field)


๏ In NMR experiments, we turn on rf pulses, which correspond to a time dependent 
Hamiltonian


  

✦Tuning Hamiltonian (Interaction) parameters: In cold atomic systems, the effective interaction

  between particles can be tuned by changing a magnetic field in a time dependent way. The 

  main difference between this and above is that we do not necessarily turn off the

  interaction


✦ Coupling to a Bath: If we wish to understand how quantum systems equilibriate, we have  

 to study the problem of a system coupled to a heat bath. Under certain conditions, this 

 problem reduces to a quantum system acted on by a time-dependent random noise.


  E.g.: Quantum Brownian Particle, Oscillator kicked by noise from you walking around it, etc.



Propagator for time dependent Hamiltonians
Formal Solution for time-dependent Hamiltonians:

i@t| (t)i = Ĥ(t)| (t)i

Integral Equation

| (t)i = | (0)i � i

Z t

0
dt0Ĥ(t0)| (t0)i

Integrate

| (t)i = [1+
P1

j=1(�i)j
R t
0 dt1

R t1
0 dt2. . .

R tj�1

0 dtjĤ(t1)Ĥ(t2). . . Ĥ(tj)]| (0)i

= T
h
e�i

R t
0 dt0Ĥ(t0)

i
| (0)

Note that time argument of H s are decreasing as we go from left to right —————> Time ordering

| (n)(t)i = [1+
nX

j=1

(�i)j
Z t

0
dt1

Z t1

0
dt2. . .

Z tj�1

0
dtjĤ(t1)Ĥ(t2). . . Ĥ(tj)]| (0)i

.
.

| (1)(t)i = | (0)i � i

Z t

0
dt1Ĥ(t1)| (0)i

Want to get rid of the time dependent |ψ(t’) > from the RHS. Do this iteratively. For 1st iteration, 
replace |ψ(t’) > by |ψ(0) > 

Use this |ψ(t’) > in RHS to get 



Time Ordering
We have formally written the time evolution operator for a time dependent Hamiltonian as a time-
ordered exponential. What does this mean?

The time ordering operator takes any of this j! terms and simply replaces it by the ordering

{t1>t2>..tj}. This results in (a) cancellation of the j! in the expression and (b) change in the limits

of integration to reflect this ordering.

is a correct but almost always useless formula by itself (i.e. without any further approximations).

In the jth order term above, there are j! possible orderings of {t1,t2,..tj}. (say {t1>t2>..tj}, 
{t2>t1>t3>..tj}  and so on).

It is however a good starting point for making various approximations.



Example: A Harmonic oscillator kicked by a spatially uniform time-dependent external force

Ĥ(t) = p̂2

2m + 1
2m!2

0 x̂
2 + f(t)x̂ [Ĥ(t1), Ĥ(t2)] =

i~(f(t1)�f(t2))
m p̂

Time Dependent Hamiltonians
The main reason that time-dependent Hamiltonians are harder to work with is that the Hamiltonian 
operator at different times do not commute with each other.

Since Hamiltonians at different times do not commute, we cannot diagonalize them simultaneously.

There is thus no obvious choice of basis to work with.

We will look at different approximation schemes to deal with time-dependent Hamiltonians,

which involve making different choice of basis to expand the problem

• Time Dependent Perturbation Theory: Time dependent part of the Hamiltonian is parametrically 

                                                 small. Expand in eigenbasis of time-independent part

                                                 of the Hamiltonian.

• Adiabatic Limit: The rate of change of Hamiltonian is parametrically small. Expand in the time 

                      dependent basis which diagonalizes the instantaneous Hamiltonian.

• Rotating Wave Approximation: Work with a time-dependent basis and neglect the fast varying 

                                       part of the Hamiltonian to get an effective time-independent 

                                       Hamiltonian. Work with eigenbasis of this effective Hamiltonian



Interaction Representation
Consider a Hamiltonian formed of two parts Ĥ = Ĥ0 + Ĥ1

The breakup can be motivated by different considerations:

Ĥ = Ĥ0 + Ĥ1

A Hamiltonian

that can be solved

e.g. free particle

Part that cannot

be solved e.g. 


Particle-Particle 

Interaction

Ĥ = Ĥ0 + Ĥ1

Time indep. part

of Hamiltonian

Time dep. part

of Hamiltonian

Ĥ = Ĥ0 + Ĥ1

Hamiltonian

of system

Probe-system

Interaction

e�iĤ0t(Ĥ0 + i@t)| I(t)i = (Ĥ0 + Ĥ1)e�iĤ0t| I(t)i

i@t| S(t)i = (Ĥ0 + Ĥ1)| S(t)iSchrodinger Eqn.:

Interaction Representation: Put the time evolution due to      on the operators and the rest 

                                     on the states.

Ĥ0

| I(t)i = eiĤ0t| S(t)iDefine

i@t| I(t)i = eiĤ0tĤ1e
�iĤ0t| I(t)i



Interaction Representation

| S(t)i =
P

n cn(t)e
�i✏nt|ni ) | I(t)i =

P
n cn(t)|ni

i@tcn(t) =
P

m ei(✏n�✏m)tĤ1mn(t)

i@t| I(t)i = Ĥ1I | I(t)i

Possible time dependence of parameters of H1

Define ÂI(t) = eiĤ0tÂe�iĤ0t

for any operator A , i.e. operators evolve as in Heisenberg rep, but with H0

States evolve as in Schrodinger rep., but with the interaction rep. of H1 

Ĥ0|ni = ✏n|ni

We will assume that eigenstates and spectrum of     , or approximations to them, are knownĤ0

and expand in this basis



Driven Harmonic Oscillator: a special case

Work in the interaction picture : H1I = eiH0tH1e
�iH0t = �f(t)ei!0ta

†a(a† + a)e�i!0ta
†a

[a†a, a†] = a† [a†a, a] = �a

ei!0ta
†aa†e�i!0ta

†a = a† +
1X

n=1

(i!0t)
n/n![a†a, [a†a, . . . [a†a, a]. . . ]] = a†ei!0t

Use

Spatially uniform force

ei!0ta
†aae�i!0ta

†a = ae�i!0tSimilarly

H1I = �f(t)(a†ei!0t + ae�i!0t)Interaction Picture Hamiltonian:

[H1I(t), H1I(t
0)] = f(t)f(t0)[(a†ei!0t + ae�i!0t), (a†ei!0t

0
+ ae�i!0t

0
)] = �2if(t)f(t0) sin[!0(t� t0)]

Constant



Driven Harmonic Oscillator: a special case

[H1I(t), [H1I(t
0), H1I(t

00)]] = 0
Crucial in making this 

problem a solvable one

Interaction picture 

Eqn. of motion:

i@t| I(t)i = Ĥ1I | I(t)i

U(t, 0) = T [e�i
R t
0 H1I(t

0)dt0 ]Time Evolution Operator:

U(t, 0) = LimN!1

NY

m=1

U(m✏, (m� 1)✏) = LimN!1

1Y

m=1

e�i
R m✏
(m�1)✏ H1I(t

0)dt0

N✏ = t

0 t = Nε
ε

2ε

3ε  (N-1)ε

 (N-2)ε

N ! 1 ✏ ! 0

Trotter error due to 

taking off the time ordering ⇠ ✏2

Total Error ~ N ε2 ———> 0


 when N ——>∞, ε ——> 0,


so that Nε is fixed



Driven Harmonic Oscillator

⇣(t) = �i

Z t

0
dt0f(t0)ei!0t

0

�(t) =

Z t

0
dt0

Z t0

0
dt00f(t0)f(t00) sin[!0(t

0 � t00)]

U(t, 0) = e�i
R t
0 H1I(t

0)dt0� 1
2

R t
0 dt0

R t0
0 dt00[H1I(t

0),H1I(t
00)]

= ei�(t)+⇣(t)a†�⇣⇤(t)a= ei�(t)D[⇣(t)]

Convert back to Schrodinger picture:

U(t) = e�iH0tUI(t)e
iH0t = ei�tD[⇣(t)e�i!0t]e�iH0t

If we start with the ground state, the drive produces coherent states and upto a phase, 
the dynamics is that of coherent states.

eAeB = eA+B+ 1
2 [A,B] [A, [A,B]] = 0when

e�i
R (m+1)✏
m✏ H1I(t

00)dt00e�i
R m✏
(m�1)✏ H1I(t

0)dt0 = e�i
R (m+1)✏
(m�1)✏

H1I(t
0)dt0� 1

2

R (m+1)✏
m✏ dt00

R m✏
(m�1)✏ dt

0[H1I(t
0),H1I(t

00)]

So

Now


