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Recap of Last Class

• Schrodinger and Heisenberg Picture


•Time Evolution operator/ Propagator : Retarded and Advanced Propagator. 


• Time Evolution for time dependent Hamiltonians : Time Ordered Exponentials


• Breaking up the Hamiltonian: Interaction Picture


•Driven Harmonic Oscillator and coherent states




Time Dependent Perturbation Theory

Control Field Operator to which

the field couples

We will assume H1 to be small and expand in it. 

Formally, we can add a factor λin front of H1,

expand in powers of λ upto a certain order, and 

then set λ=1 at the end.

Interaction Rep.: i@t| I(t)i = Ĥ1I(t)| I(t)i

Comparing with the case for generic time-dependent Hamiltonian, the time evolution operator in 

the interaction representation is given by

| I(t)i = eiĤ0t| S(t)iUsing and



Linear Response Theory

Eg:  Transport ---- Electric vector potential -- couples to current density

      Susceptibility ----- magnetic field --- couples to spin density

Eg:  Transport ---- electric current

      Susceptibility ----- magnetization

In experiments, in order to study the properties of a system, we couple a probe to the system. 

e.g. we may turn on an electric or a magnetic field, we may change the pressure etc.

Control Field


Operator to which

the field couples


The effect of the probe is modelled as an additional piece in the Hamiltonian of the system, which 

is turned on at t=0.

We usually measure some quantity represented by the operator B after turning on the probe.

In case B has finite expectation in absence of probe, we are interested in change of B due to 

the probe, δB; i.e. we wish to study how the system responds to the probe stimulus.

Linear Response Theory: The response <B(t)> or <δB(t)> is calculated to linear order in f(t)

The basic assumption is that the probe disturbs the system gently, so that perturbation theory 

can be used to calculate the response.

R. Kubo, Journal of Physical Society of Japan,

Vol 6 Page 570 (1957)



Linear Response Theory
Work in the interaction representation

Using H1=-f(t)A

Lin. Response Function (also called Kubo formula)

�B(t) =
R
dt

0
f(t0)�BA(t, t0)It is useful to write

Using the expansion of UI

and collecting terms linear in H1



Linear Response Function

Characteristic of Lin. Response: The system responds only at the frequency at which it is modulated

๏ The response function is a property of the unperturbed state


๏ Response is causal, i.e. perturbation at time t’ can only affect response after t’. Theta fn. 
ensures that.

�B(t) =
R
dt

0
f(t0)�BA(t, t0)

Time translation invariance of unperturbed system:  �BA(t, t0) = �BA(t� t0)

�B(t) =
R
dt

0
f(t0)�BA(t� t0) ) �B(!) = f(!)�BA(!)

Fourier Transform: Convolution —> Multiplication



Spectral Decomposition
Assume that the system is initially in its ground state , or at least an eigenstate of H0

An0 = hn|Â|0i Ĥ0|ni = !n|niwhere

X

n

|nihn| = 1
X

n

|nihn| = 1

We will assume A and B to be Hermitian operators

limit from

theta fn

We will use retarded response

where

and



Real and Imaginary parts

Acts like an inverse of impedance


Using

• Real part of 𝜒 controls the modulation of B in phase with external perturbation.

• Imaginary part of 𝜒 controls the modulation of B out of phase with external perturbation.

�BA(! + i⌘) = �
0

BA(!) + i�
00

BA(!)

�
00

BA(!) = ��
00

AB(�!)

�
00

AA(!) = ��
00

AA(�!) odd function of frequency

It is clear from above formula that

Similarly it can be shown that even function of frequency



Relating          to energy dissipated in the process�
00

AA(!)

Infinitesimal work done on the system by 

external perturbation in changing A to A+ dA 

dW = �f(t)dhÂ(t)i

Generalization

of force

Generalization

of displacement

dW

dt
= �f(t)@thÂ(t)i = �f(t)@t

Z 1

�1
dt0�AA(t� t0)f(t0)

Instantaneous Power

= �f(t)@t

Z 1

�1

d!

2⇡

Z 1

�1
dt0�AA(!)e

�i!(t�t0)f(t0)

= f(t)

Z 1

�1

d!

2⇡
(i!)�AA(!)e

�i!tf(!)

= f(t)

Z 1

�1

d!

2⇡
(i!)�AA(!)e

�i!t

Z 1

�1
dt0ei!t0f(t0)

Real and Imaginary parts

Average Power

P =
1

T

Z T/2

�T/2

dW

dt
=

Z 1

�1

d!0

2⇡
f(!0)

Z 1

�1

d!

2⇡
(i!)�AA(!)

"
1

T

Z T/2

�T/2
dte�i(!+!0)t

#

As long as f(t)  --> 0

 as t --> ∞, one can 

choose a T large enough

to do this
Replace by delta fn. }



P ⇠
Z 1

�1
d!0

Z 1

�1
d!f(!0)f(!)(i!)�AA(!)�(! + !0) =

Z 1

�1
d!f(!)f(�!)(i!)�AA(!)

= �
Z 1

�1
d!f(!)f(�!)!�

00

AA(!)
Since the real part is even in freq, 


its contribution to the integral vanishes

For real f(t) f(�!) = f⇤(!) P ⇠ �
Z 1

�1
d!|f(!)|2!�

00

AA(!)

For harmonic perturbation (which has single frequency component with amplitude f0)

P ⇠ �|f0|2!�
00

AA(!) For system in eqbm. !�
00

AA(!) � 0

Real and Imaginary parts



Kramers-Kronig Relations
The real and imaginary part of a retarded linear response function are not independent 
quantities. They are related to each other by Kramers-Kronig relations.

The retarded response function is analytic in the upper half-plane (similar to retrded propagators)

C

If either the real or the imaginary part is known (for all frequencies), the other part can 
be obtained. This is often used in experiments e.g. absorption of light is related to 
imaginary part of optical conductivity, but can be used to obtain the full response function.

Equating real and Im parts



Sum Rules

Need to know solution of the full problem

Moments of Imaginary part of response function in terms of ground state 
properties

Ground State Property



Example: Driven Harmonic Oscillator

Suppose we start the system in its ground state and want to measure the average position

hx(t)i =
Z

t

0
dt

0
f(t0)�

xx

(t� t

0)

�
xx

(t� t0) = i⇥(t� t0)[ei!0(t�t

0) � e�i!0(t�t

0)]

hx(t)i = �i

Z t

0
dt

0[f(t0)(e�i!0(t�t0) � e

i!0(t�t0)) = ⇣(t)ei!0t + ⇣

⇤
e

�i!0t

Compare with the exact solution U(t) = ei�(t)D[⇣(t)e�i!0t]

The drive creates coherent states and avg of x is just the real part of the complex number 
denoting the coherent state.

�
xx

(!) =
2!0

!2 � !2
0

=
1

! � !0
� 1

! + !0

Spectral Decomposition



Example: Time Dependent Anharmonic Perturbation

Suppose we start the system in its ground state and want to measure the average position

Spectral Decomposition

The full time dependent H is inversion symmetric

How about measuring  < x2> ?

Check from explicit expansion



Transition Probability
Consider the old problem of absorption of light which falls on an atom. 


System Hamiltonian H0 ——> the energy levels of the atom. 


We assume that the atom is initially in one of the eigenstates, i, where the time dependent 
perturbation H1(t) (in this case the light-matter interaction term) is switched on.  


We want to know the probability of finding it in other states, i.e. we want to know what is the 
probability that a particular transition will occur.

| (t)i =
X

n

|nihn|U(t)|ii =
X

n

cn(t)|ni

Transition Probability: Pni(t) = |cn(t)|2 = |hn|U(t)|ii|2

cn(t) = |hn|e�iH0tUI(t)e
iH0t|ii = e�i!n0thn|UI(t)|ii

Pert. Expn. for U(t)

Dyson Series

cn(t) = c(0)n (t) + c(1)n (t) + c(2)n (t)
c(0)n (t) = �ni

c(1)n (t) = i

Z t

0
dt0f(t0)hn|ÂI(t

0)|ii



Transition Probability
Since we are interested in transition probabilities, we are thinking of n 6= i

Then, upto second order in perturbation theory, Pni(t) = |c(1)n (t)|2

Pni(t) = 4|Ani|2
Z 1

�1

d!

2⇡

Z 1

�1

d!0

2⇡
f(!)f(!0

) cos[(!0 � !)t/2]
sin[(! � !ni)t/2]

! � !ni

sin[(!0 � !ni)t/2]

!0 � !ni

Harmonic Perturbation: f(t) = 2 cos(⌦t) ) f(!) = 2⇡[�(! � ⌦) + �(! + ⌦)]

c(1)n (t) = i

Z 1

�1

d!

2⇡
f(!)

Z t

0
dt0ei(!ni�!)t0Ani = 2iAni

Z 1

�1

d!

2⇡
f(!)ei(!ni�!)t/2 sin[(! � !ni)t/2]

! � !ni

c(1)n (t) = i

Z t

0
dt0f(t0)hn|ÂI(t

0)|ii

Pni(t) = 4|Ani|2

sin

2
[(⌦� !ni)t/2]

(⌦� !ni)
2

+

sin

2
[(⌦+ !ni)t/2]

(⌦+ !ni)
2

+ cos[⌦t]
sin[(⌦� !ni)t/2] sin[(⌦+ !ni)t/2]

!2 � !2
ni

�



Fermi’s Golden Rule

Lima!1
sin2(ax)

ax

2
= ⇡�(x)Using Pni(t) = 2⇡|Ani|2t�(⌦± !ni)

i

Define Transition rate �ni = Pni(t)/t = 2⇡|Ani|2�(⌦± !ni)

⌦

n

i

Absorption of energy from perturbation

⌦

n

Stimulated Emission due to perturbation

(happens when initial state is excited state)

Matrix Elements ——> Symmetry Considerations

Then, considering a long timescale t >> Ω-1 , either the first term or the 2nd term survives.   

Usually we are interested in the transition probabilities when              or    ⌦ ⇠ !ni ⌦ ⇠ �!ni

Pni(t) = 4|Ani|2

sin

2
[(⌦� !ni)t/2]

(⌦� !ni)
2

+

sin

2
[(⌦+ !ni)t/2]

(⌦+ !ni)
2

+ cos[⌦t]
sin[(⌦� !ni)t/2] sin[(⌦+ !ni)t/2]

!2 � !2
ni

�



Radiation Coupling to Matter
The interaction of charged particles with E-M fields can be incorporated through the term

A is the vector potential

Assuming weak fields, so that A2 terms can be neglected, we get

Use

For E-M waves,

So the perturbation term



Dipole Approximation
The size of the atom is typically much smaller than the wavelength of light

So, This is called the dipole approximation

Not a good approximation for Rydberg atoms/ electrons in very high radial quantum no. states 

For a Hamiltonian

Since we are interested in the absorption of the light, we will be interested in matrix element 

of the perturbation operator

Dipole Matrix Element


