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Recap of Last Class

® Time Dependent Perturbation Theory
Linear Response Function and Spectral Decomposition
® Real and Imaginary Part of Response Fn.

® Fermis Golden Rule and Transition Probabilities



Quantum Adiabatic Theorem

Consider a time dependent Hamiltonian H(t). If H was time independent, we have seen that

expanding the state of the system in this basis simplifies the dynamics.

Is it useful to expand the state in the eigenbasis of the instantaneous Hamiltonian H(t) for
each time-point 1?2 This would in general be a fime-dependent basis sef, since Hamiltonians at

different time points do not commute.

Quantum Adiabatic Theorem (Max Born and Vladimir Fock, 1928)

For a continuously evolving of Hamiltonian, whose changes are slow enough, a quantum
system, which is initially in the eigenstate of the instantaneous Hamiltonian, follows this
state provided the eigenvalue of this state is nondegenerate and separated from the rest
of the (instantaneous) Hamiltonians spectrum at all times.



Quantum Adiabatic Theorem

A spin 1/2 object in a magnetic field. 2D Hilbert space with a Hamiltonian

B = - Assume that magnitude of the magnetic field
H(t) = —upB(t) -0 is fixed, while its direction varies with time.

Define the basis states
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If B(t)=Bn(t) |n(t),+)

ﬁ(t) is the basis where the instantaneous
Hamiltonian H(t) is diagonalized
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The eigenvalues of the instantaneous Hamiltonian : :|:§,LLBB gapped spectrum at all times

The Quantum Adiabatic theorem, in this case, states that, if we start the system in the state
In(0), +>, the system will evolve to [n(t), +>. Similarly, if we start with In(0), ->, the system
will evolve to |n(t),->



Quantum Adiabatic Theorem R Vector space of

R(t)  time dependent Parameters
® 0 |y(t)) = HIR()]|Y(2)) (

The Hamiltonian at time t is completely >

specified by the values of (possibly >1) . o
parameters which change with time. H(t) is a point in the parameter space

As the parameters change in time, one traces out a curve in the parameter space, R(t)

Correspondingly, at each time (or for each R), there is a basis which diagonalizes H[R(1)]
® HIRWM)[n[R(1)]) = ex[R(1)]|n[R(1)])

(1) =D ea(t)e o WO n(t)) =3 e, (H)e™ " On(t))
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Quantum Adiabatic Theorem H(t) is a point in R()
X the parameter space
H(t)|n(t)) = ea(t)[n(t))
Taking fime derivative >

H(t)In(t)) + H@)A(b)) = én(®)In(®)) + ea(t)lin(®))

Vector space of
time dependent Parameters

én(8)0mn + en(D)(mB)(E)) = (MO H(®)|n(t)) + (m(t)lH (t)ln(t))

| m (1) (m(t)|2(1))
(m(t)|H (t)|n(t))

form #n
€n (t) — €m (t)

So (m(t) (1)) =

Adiabaticity condition is equivalent
em(t) = —em(t)(m(t)|m(t)) — )t 0m (H)=0n ()4 \N/ln Y q

€ t) em(t) Yo neglecting the second term on RHS

n;ém

Y lea®P =1=|en(t)l <1  Adiabaticity condition (m|H|n) < (€n — €m){m|m)

For lowest energy gap A = Min(en — €m) (m|H|n) < A{m|m)



Berry Phase
For adiabatic processes, starting from a non-degenerate state
Cm(t) = e (0)e™ o @ MM — o ()eivm

t : ® Extra phase due to time-dependent basis
Berrys Phase ym(t) = / dt' (m(t")|m(¢
y mlt) = 0 m{t)fm(#) ® Separate from the dynamic phase 0O

Starting from an eigenstate of the initial Hamiltonian

¢m(0) =1 Jor m =mg |
o T T ) =€) [T
T

The system remains in the corresponding +
Instantaneous eigenstate

ARD)
ts . tr Vector space of
() = i / at' (n[R(t")][n[R{t")]) = i / i B[R]V alnlBE)) ( Parameters
= / A(R) - dR .

H(t) is a point in

Vector Potential/Berry Connection A(R) = i(n(R)|Vg|n(R)) the parameter space



Berry Phases and Gauge Invariance p 4RO

Vector space of
At each point in the trajectory, the instantaneous ( Parameters
Hamiltonian specifies the eigenbasis upto an overall phase
which we can choose.This is a position (in the param space) >

dependent phase rotation ( a U(l) gauge symmetry).

H(t) is a point in
the parameter space
Let us assume we can choose the phase of the state we are

tracking. All other phases are fixed by H[R(})].

n(R)) = "D n(R)) A(R) = i(n(R)|VrIn(R)) = i(n(R)|e** PV e ®|n(R))

= i(n(R)|Vr|n(R)) — VRO(R) = A(R) — Vrd(R)

Berry potential is not a gauge invariant quantity

C
R(t)
Berry, 1973: Consider the evolution on a closed path, so
that H(T)=H(0) Vector space of
' Parameters
)
Berry phase for this evolution
H(t) is a point in
%(C):]{ A(R) - dR the parameter space
C

IS a gauge invariant quantity



Berry Phase for closed paths

What happens to the system if we adiabatically take it along a closed path?
C

T _/ R(t)
~————" Vector space of
\___/\" Parameters

)

.l.

The system remains in the corresponding H(t) is a point in
instantaneous eigenstate the parameter space

Y (ty)) = 'O t1m)]4(0))

% or Berry Phase

Dynamic Phase
depends on the circuit C , but not

depends on how fast or ni » bu
slow the circuit C is traversed. on how it is traversed in time



Berry Curvature

Consider 3-dimensional space of parameters, and use Stokes Theorem

C)=i [ [ 45-9 x RVl —Im//(Vnﬂ[R]IXIVIm[ )

——Im Y // dS - (Vrn|R]jm) x (m|V zn[R)) R(t)
M Vector space of
Parameters
where S is any surface >

which has C as its boundary
H(t) is a point in
the parameter space

use  (mivn) = VHI o write  4,(0) = - [ [ asBum
7 R)|VrH(R)|m(R)) x (m(R)|VrH(R)|n(R)) Effective Magnetic
mﬂ; (En(R) — En(R))? Field/ Berry Curvature

The Berry curvature is a gauge invariant quantity



Degeneracy Points and Simplification

Berry phase calculation simplifies for trajectories near a degeneracy point (which avoid this
degenerate point).

. R)|V R (R)m(R)) x {m(R)|V rH (R)|n(R))
-/ /cdS'B"(R) R = m Y RO B(R) — En(R)E

m#n

Simplest Case: A degeneracy of 2 states (I+> and |->) at R=Ro. Ignore other states: finite energy
denominator ----- > Work with 2X2 Hamiltonian in this space.

1 — —
Most General 2X2 Hamiltonian H(R) = % ( H sz H_HZH ) = §R R=(H,,H, H,)
x Yo z

VrH = 15 E.(R) = +R Use all your expertise with spin-1/2 objects to get
2 L
— — R B 1
C A

Q¢ is the solid angle subtended by the circuit C at the
degeneracy point.




Topological Invariants

For a 2 state system with time varying Hamiltonian, the Berry phase is given by

1
v+ (C) = $§QC Qc is the solid angle subtended by the circuit C at the degeneracy point.

7

C
>
Now consider a 2D parameter space, say Hy is O

g

If Hy is O, exp[i v(C)]= -1 if C encloses degeneracy point and expli v(C)]=1 if it does not.

v(C)= m if C encloses degeneracy point and v(C)= O if it does not.

The Berry phase is topological in the sense that contours that can be smoothly deformed to
each other has same Berry phase.

The degeneracy point acts as a “puncture” in this manifold and loops enclosing this point
have a different topology than those not enclosing it.



State Systems and Rabi Oscillation

2-state system with time indep. Hamiltonian

Ho = E1[1)(1] + E2[2)(2] A

Harmonic time-dependent off-diagonal term
' \ 4

Example: Two level atom interacting with
classical radiation field.

Hi(t) = Q(e! + e~ H)|1)(2] + h.c.

Transform to a time dependent basis, which rotates in time with the freq of the pert.

1) =€) [2) = [2)

This is different from going to interaction representation.

There, states rotate with their unperturbed energies as freq. Here the rotation freq.
is the perturbation frequency. However, at resonance (v= E:-E;), the two approaches
are exactly same.



2 State Systems and Rabi Oscillation |
Hy = Ea[1)(1] + E[2)(2] E
: \4
Example: Two level atom interacting with
classical radiation field.

Hi(t) = Q™ + e ™H|1)(2]| + h.c.

In the rotating basis: [1') = e™¢[1) |2') = |2)
H = Eq[1)(V] + E2|27) (2" + Q[|1) (2] + [2'){1']]

+Q[e” ™ e 2 (1]

Rotating Wave Approximation: RWA

In the basis rotating with the perturbation, terms with explicit dynamics on the scale of
the perturbation freq. are neglected (set to O by hand). Implicit assumption: we (the
measurement process) averages over timescales much larger than v



RWA and Dressed States
[Y(t)) = ci(t)|1") + ca(t)]2)

Initial Condition:

Schrodinger Equation: ¢ Ei+w O ¢l
(Tlme Dep BClSiS) l < Co ) — ( 0 E, ) ( Co ) 01(0) = 1, CQ(O) = ()
Dressed Hamiltonian Rabi Frequency
Eigenvalues: g* — 227 ]252 T \/(E2 - il —@l g WR = \/(w _le)Q + 02

Eigenstates:  |y+(7)) = ( ul ) ) w=1-0v" =g [1 W f;jﬁ% o

Dressed States: Eigenstates of the "Hamiltonian” in the rotating basis

Transform back to get dynamics  ¢1(t) = u2e™ "t 4 p2e =it
co(t) = uv[e_iEth _ e—iE_t]
2 QQ 2 2 QQ . 92
So, lc1(t)|” =1 — —5 sin”(wrt) lca(t)|” = —5 sin”(wrt)



2 State Systems and Rabi Oscillation  Rrabi Frequency wi = \/ s f21)2 + Q2

2 2
1 (1)] c1(t)] Ok
2 ()] t)|?
[c2(2)] e (1)[2
1.
Q/wr = 0.7 1 Qfwr = 0.9 f
Q/wR =1.0
1 (1))
A
: m Pulse: Population in
\ S,=-1/2 state
‘ ‘ ea ()] l
1.
A
— /2 Pulse: Population in

Sy state




Rabi Oscillations and RWA

e (1)) e2(t)]° RWA vs. Full
Numerical Solution

RWA misses
the fast wiggles
t ' t
As the frequency of the perturbation nears resonance, i.e. for w — FEg; < {2
. 2
o~ 0+ YT e transition probability oscillates with time with the Rabi frequency.

8()2

M Quite different from linear response theory (where osc. are at driving frequency ) or
from Fermi golden rule where fransition probability scales with time.

@ Notice that we have not talked about “weak” or perturbative drive. In fact, near
resonance, the coupling of the time dependent part dominates the whole action.

MThis type of drive is often called coherent coupling of states/coherent drives, since the
drive induces phase correlations between the 2 states.

Near resonance we do have a small parameter A/}, where A is the detuning from the
transition. This is a question of having different time-scales in the problem.



RWA with 3 states

3 Three state system and 2 optical perturbation

" A
A ; Ho = Er|1)(1] + E2|2)(2| + Es[3)(3)

Esi ¢
Hi(t) = Qq (™" + e 2D [1)(3] 4+ Qo (™2t + e~ ™21)|2) (3| + h.c.
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: |1/> — 6iE1t|1> |2/> — 67L(E1—|—w1—w2)t|2> |3/> — ei(E1+w1)t‘3>

Rotating Wave

0 0
H = ( 0 A —A Approximation

2 {2
Dressed Hamiltonian 2 photon resonance: 0 =A; —A; ~0
USingt 9) — 0 fan(9d) — Qf 4+ Q3
an(6) = Qs an(2¢) = Ay Autler Townes Splitting

+ _ A A2 102102
Dressed States: |a1) = sinfsin ¢|1) 4 cos ¢|3) + cos §sin ¢|2) “ L \/ IR

la™) = sinf cos ¢|1) — sin ¢|3) + cos 6 cos ¢|2)

a”) = cosf|1) —sinf|2)  Dark State: Does not overlap with |3> , eigenvalue O



RWA with 3 states 3

Ay v A

|a”) = cos0]1) — sin 0|2) Dressed State

m
w
o

Dark State: No overlap with |35 , eigenvalue O

<
2

(\O
m
~

1

If atom is prepared in this dressed state, it cannot be excited to |3> and cannot decay
by spontaneous emission. Hence this state is called dark state.

If by some mechanism, the atom is prepared in this state, it will remain in this state for
a very long time

| a(*‘))
I a(‘))

Consider the case : Q1 < Qy 9 —0 |a”) —|1)

lat) — cos@|3) +sing|2)  |a”) — —sin ¢|3) + cos ¢|2)

Cannot excite the system even if a resonant field (between [1> and |35) is applied. This is
due to the already applied dressing field between |2> and |3>. This phenomenon is called
Electromagnetically Induced Transparency (EIT)



