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Recap of Last Class

• Time Dependent Perturbation Theory


• Linear Response Function and Spectral Decomposition


• Real and Imaginary Part of Response Fn.


• Fermi’s Golden Rule and Transition Probabilities




Consider a time dependent Hamiltonian  H(t).  If H was time independent, we have seen that 
expanding the state of the system in this basis simplifies the dynamics.  


Is it useful to expand the state in the eigenbasis of the instantaneous Hamiltonian H(t) for 

each time-point t? This would in general be a time-dependent basis set, since Hamiltonians at 
different time points do not commute.

For a continuously evolving of Hamiltonian, whose changes are slow enough, a quantum 
system, which is initially in the eigenstate of the instantaneous Hamiltonian, follows this 
state provided the eigenvalue of this state is nondegenerate and separated from the rest 
of the (instantaneous) Hamiltonian’s spectrum at all times.

Quantum Adiabatic Theorem  (Max Born and Vladimir Fock, 1928)

Quantum Adiabatic Theorem



If ~B(t) = Bn̂(t) |n̂(t),±i
is the basis where the instantaneous 


Hamiltonian H(t) is diagonalized

The eigenvalues of the instantaneous Hamiltonian : ⌥1

2
µBB gapped spectrum at all times

The Quantum Adiabatic theorem, in this case, states that, if we start the system in the state

|n(0), +>, the system will evolve to |n(t), +>. Similarly, if we start with |n(0), ->, the system 

will evolve to |n(t),->

A spin 1/2 object in a magnetic field. 2D Hilbert space with a Hamiltonian 

H(t) = �µB
~B(t) · ~� Assume that magnitude of the magnetic field 


is fixed, while its direction varies with time.

Define the basis states

|n̂,+i |n̂,�iand

~� · n̂|n̂,±i = ±1

2
|n̂,±i

n̂(0) n̂(t)

where

Quantum Adiabatic Theorem



i@t| (t)i = Ĥ[R(t)]| (t)i

Vector space of 

time dependent ParametersR(t)

The Hamiltonian at time t is completely

specified by the values of (possibly >1) 

parameters which change with time. H(t) is a point in the parameter space

As the parameters change in time, one traces out a curve in the parameter space, R(t)

Correspondingly, at each time (or for each R), there is a basis which diagonalizes H[R(t)]

Ĥ[R(t)]|n[R(t)]i = ✏n[R(t)]|n[R(t)]i

| (t)i =
X

n

cn(t)e
�i

R t
0 dt0✏n(t)|n(t)i =

X

n

cn(t)e
�i✓n(t)|n(t)i

X

n

[✏ncn(t) + iċn(t)]e
�i✓n(t)|n(t)i+ icn(t)e

�i✓n(t) ˙|n(t)i =
X

n

cn(t)✏n(t)e
�i✓n(t)|n(t)i

From

Quantum Adiabatic Theorem

hm(t)|n(t)i = �mnUsing ˙cm(t) = �cm(t)hm|ṁi �
X

n 6=m

cn(t)e
i[✓m(t)�✓n(t)]hm|ṅi



Vector space of 

time dependent Parameters

R(t)H(t) is a point in 

the parameter space

Quantum Adiabatic Theorem

Taking time derivative

So for m ≠ n

Adiabaticity condition is equivalent 

to neglecting the second term on RHS

X

n

|cn(t)|2 = 1 ) |cn(t)| < 1 Adiabaticity condition

For lowest energy gap hm| ˙̂H|ni ⌧ �hm|ṁi



For adiabatic processes, starting from a non-degenerate state

cm(t) = cm(0)e�
R t
0 dt0hm(t0)| ˙m(t0)i = cm(0)ei�m

Berry’s Phase �m(t) = i

Z t

0
dt0hm(t0)| ˙m(t0)i • Extra phase due to time-dependent basis


• Separate from the dynamic phase θm

Berry Phase

�n(t) = i

Z tf

0
dt0hn[R(t0)]| ˙n[R(t0)]i = i

Z tf

0
dt0Ṙhn[R(t0)]|rR|n[R(t0)]i

~A(R) = ihn(R)|rR|n(R)iVector Potential/Berry Connection

Vector space of 

Parameters

H(t) is a point in 

the parameter space

R(t)

Starting from an eigenstate of the initial Hamiltonian

cm(0) = 1 for m = m0

cm(0) = 0 for m 6= m0

The system remains in the corresponding

 instantaneous eigenstate

t

| n(tf )i = ei(✓n+�n)| (0)i



Berry Phases and Gauge Invariance

At each point in the trajectory, the instantaneous 

Hamiltonian specifies the eigenbasis upto an overall phase

which we can choose.This is a position (in the param space)

dependent phase rotation ( a U(1) gauge symmetry).

Vector space of 

Parameters

H(t) is a point in 

the parameter space

R(t)

Let us assume we can choose the phase of the state we are 
tracking. All other phases are fixed by H[R(t)].

Berry potential is not a gauge invariant quantity

Berry, 1973: Consider the evolution on a closed path, so 

               that H(T)=H(0). Vector space of 


Parameters

H(t) is a point in 

the parameter space

R(t)
C

Berry phase for this evolution

=

I

C

~A(R) · dR

is a gauge invariant quantity



The system remains in the corresponding

 instantaneous eigenstate

t

Berry Phase for closed paths

Vector space of 

Parameters

H(t) is a point in 

the parameter space

R(t)
C

What happens to the system if we adiabatically take it along a closed path?

| n(tf )i = ei(✓n+�n)| (0)i

Geometric or Berry Phase

depends on the circuit C , but not 


on how it is traversed in time

Dynamic Phase

depends on how fast or 


slow the circuit C is traversed.



Consider 3-dimensional space of parameters, and use Stokes Theorem

�n(C) = i

Z Z

C
d~S ·r⇥ hn[R]|rRn[R]i = �Im

Z Z

C
d~S · hrRn[R]|⇥ |rRn[R]

= �Im
X

m 6=n

Z Z

C
d~S · hrRn[R]|mi ⇥ hm|rRn[R]i

where S is any surface 

which has C as its boundary

Berry Curvature

~Bn(R) = Im
X

m 6=n

hn(R)|rRĤ(R)|m(R)i ⇥ hm(R)|rRĤ(R)|n(R)i
(En(R)� Em(R))2

Effective Magnetic 
Field/ Berry Curvature

Use �n(C) = �
Z Z

C
d~S. ~Bn(R)to write

Vector space of 

Parameters

H(t) is a point in 

the parameter space

R(t)
C

The Berry curvature is a gauge invariant quantity



Degeneracy Points and Simplification
Berry phase calculation simplifies for trajectories near a degeneracy point (which avoid this 
degenerate point).

�n(C) = �
Z Z

C
d~S. ~Bn(R) ~Bn(R) = Im

X

m 6=n

hn(R)|rRĤ(R)|m(R)i ⇥ hm(R)|rRĤ(R)|n(R)i
(En(R)� Em(R))2

Simplest Case: A degeneracy of 2 states (|+> and |->) at R=R0. Ignore other states: finite energy 
denominator   -----> Work with 2X2 Hamiltonian in this space.

rRH =
1

2
~� E±(~R) = ±R Use all your expertise with spin-1/2 objects to get                  

~B±(~R) = ±
~R

R3
�±(C) = ⌥1

2
⌦C

C

ΩC is the solid angle subtended by the circuit C at the 

degeneracy point.


H(R) =
1

2

✓
H

z

H
x

� iH
y

H
x

+ iH
y

, �H
z

◆
=

1

2
~R · ~� ~R = (H

x

, H
y

, H
z

)Most General 2X2 Hamiltonian



Topological Invariants

ΩC is the solid angle subtended by the circuit C at the degeneracy point.

C

If Hy is 0, exp[i γ(C)]= -1 if C encloses degeneracy point and exp[i γ(C)]= 1 if it does not.

γ(C)= 𝜋 if C encloses degeneracy point and γ(C)= 0 if it does not.

The Berry phase is topological in the sense that contours that can be smoothly deformed to 
each other has same Berry phase.


The degeneracy point acts as a “puncture” in this manifold and loops enclosing this point 
have a different topology than those not enclosing it.

�±(C) = ⌥1

2
⌦C

For a 2 state system with time varying Hamiltonian, the Berry phase is given by

Now consider a 2D parameter space, say Hy is 0



2 State Systems and Rabi Oscillation
2-state system with time indep. Hamiltonian

H0 = E1|1ih1|+ E2|2ih2|

Harmonic time-dependent off-diagonal term

H1(t) = ⌦(ei!t + e�i!t)|1ih2|+ h.c.

E2-E1ω

Example:   Two level atom interacting with 

                classical radiation field.

There, states rotate with their unperturbed energies as freq. Here the rotation freq. 
is the perturbation frequency. However, at resonance (ω= E2-E1), the two approaches 
are exactly same.

This is different from going to interaction representation. 

Transform to a time dependent basis, which rotates in time with the freq of the pert.

|10i = ei!t|1i |20i = |2i



2 State Systems and Rabi Oscillation
E2-E1ω

Example:   Two level atom interacting with 

                classical radiation field.

In the rotating basis:

H = E1|10ih10|+ E2|20ih20|+ ⌦[|10ih20|+ |20ih10|]

+⌦[e�2i!t|10ih20|+ e2i!t|20ih10|]

Rotating Wave Approximation:

In the basis rotating with the perturbation, terms with explicit dynamics on the scale of 
the perturbation freq. are neglected (set to 0 by hand). Implicit assumption: we (the 
measurement process) averages over timescales much larger than ω-1.

RWA

H0 = E1|1ih1|+ E2|2ih2|

H1(t) = ⌦(ei!t + e�i!t)|1ih2|+ h.c.

|10i = ei!t|1i |20i = |2i



Schrodinger Equation:

(Time Dep. Basis)

RWA and Dressed States
| (t)i = c1(t)|10i+ c2(t)|20i

i

✓
ċ1
ċ2

◆
=

✓
E1 + ! ⌦

⌦ E2

◆✓
c1
c2

◆

Dressed Hamiltonian

| +(�)i =
✓

u(�v)
v(u)

◆
Eigenstates: u2 = 1� v2 =

1

2

"
1 +

! � E21

2
p

(! � E21)2/4 + ⌦2

#

E± =
E1 + E2 + !

2
±

r
(E2 � E1 � !)2

4
+ ⌦2Eigenvalues: !R =

r
(! � E21)2

4
+ ⌦2

Rabi Frequency

Dressed States: Eigenstates of the “Hamiltonian” in the rotating basis

Transform back to get dynamics c1(t) = u2e�iE+t + v2e�iE�t

c2(t) = uv[e�iE+t � e�iE�t]

|c2(t)|2 =
⌦2

!2
R

sin2(!Rt)|c1(t)|2 = 1� ⌦2

!2
R

sin2(!Rt)So,

c1(0) = 1, c2(0) = 0

Initial Condition:



!R =

r
(! � E21)2

4
+ ⌦2Rabi Frequency

t

|c1(t)|2

|c2(t)|2

⌦/!R = 0.9
t

|c1(t)|2

|c2(t)|2

⌦/!R = 0.7

2 State Systems and Rabi Oscillation

t

|c1(t)|2

|c2(t)|2

⌦/!R = 1.0

t

|c1(t)|2

|c2(t)|2

π Pulse: Population in 

Sz=-1/2 state

t

|c1(t)|2

|c2(t)|2
π/2 Pulse: Population in


 Sy state



Rabi Oscillations and RWA 

As the frequency of the perturbation nears resonance, i.e. for ! � E21 ⌧ ⌦

!R ⇠ ⌦+
(! � E21)2

8⌦2
the transition probability oscillates with time with the Rabi frequency.

Quite different from linear response theory (where osc. are at driving frequency ω) or

 from Fermi golden rule where transition probability scales with time.

Notice that we have not talked about “weak” or perturbative drive. In fact, near 
resonance, the coupling of the time dependent part dominates the whole action. 


This type of drive is often called coherent coupling of states/coherent drives, since the 
drive induces phase correlations between the 2 states.

Near resonance we do have a small parameter      , where Δ is the detuning from the 
transition. This is a question of having different time-scales in the problem.

�/⌦

|c1(t)|2 |c2(t)|2

t t

 RWA vs. Full 

Numerical Solution

RWA misses 

the fast wiggles



RWA with 3 states 
Three state system and 2 optical perturbation

H0 = E1|1ih1|+ E2|2ih2|+ E3|3ih3|

ω1
ω
2

1

3

2

E31

E32

E21

Δ1 Δ2

H1(t) = ⌦1(e
i!1t + e�i!2t)|1ih3|+ ⌦2(e

i!2t + e�i!2t)|2ih3|+ h.c.

|10i = eiE1t|1i |20i = ei(E1+!1�!2)t|2i |30i = ei(E1+!1)t|3i

H =

0

@
0 0 ⌦1

0 �1 ��2 ⌦2

⌦1 ⌦2 �1

1

A +

0

@
0 0 ⌦1e�2i!1t

0 0 ⌦2e�2i!2t

⌦1e2i!1t ⌦2e2i!2t 0

1

A Rotating Wave 

Approximation

Dressed Hamiltonian � = �1 ��2 ' 02 photon resonance:

tan(✓) =
⌦1

⌦2
tan(2�) =

p
⌦2

1 + ⌦2
2

�1

Using

|a+i = sin ✓ sin�|1i+ cos�|3i+ cos ✓ sin�|2i

|a�i = sin ✓ cos�|1i � sin�|3i+ cos ✓ cos�|2i

Dressed States:

|a0i = cos ✓|1i � sin ✓|2i Dark State: Does not overlap with |3> , eigenvalue 0

!± = �1 ±
q

�2
1 + ⌦2

1 + ⌦2
2

Autler Townes Splitting



RWA with 3 states 

|a0i = cos ✓|1i � sin ✓|2i

Dark State: No overlap with |3> , eigenvalue 0
ω1

ω
2

1

3

2

E31

E32

E21

Δ1 Δ2

Dressed State

If atom is prepared in this dressed state, it cannot be excited to |3> and cannot decay 
by spontaneous emission. Hence this state is called dark state.


If by some mechanism, the atom is prepared in this state, it will remain in this state for 
a very long time

Consider the case : ⌦1 ⌧ ⌦2 ✓ ! 0 |a0i ! |1i

dependent suppression or enhancement in the photoion-
ization cross section.

Experiments by Madden and Codling !1965" showed
the resulting transparency windows in the autoionizing
spectrum of helium. Sometime later the autoionizing in-
terference structures in strontium were used by Arm-
strong and Wynne to enhance sum-frequency mixing in
a frequency up-conversion experiment to generate light
in the vacuum UV !Armstrong and Wynne, 1974".1 In
this wave-mixing experiment the absorption was elimi-
nated in spectral regions where the nonlinear response
remained large, hence an improved efficiency for fre-
quency conversion was reported.

During the 1960s autoionizing spectra were much
studied !see, for example, Garton, 1966". Several authors
addressed the issue of interaction between two or more
spectral series in the same frequency range, where the
interference between closely spaced resonances needs to
be considered !Fano and Cooper, 1965; Shore, 1967".
Shapiro provided the first explicit analysis of the case of
interference between two or more resonances coupled
to a single continuum !Shapiro, 1970". In this case the
interference is mainly between the two transition path-
ways from the ground state to the final state via each of
the two resonances #Fig. 3!b"$. Naturally interference
will be significant only if the spacing between these reso-
nances is comparable to or less than their widths.

Hahn, King, and Harris !1990" showed how this situa-
tion could be used to enhance four-wave mixing. In ex-
periments in zinc vapor that showed significantly in-
creased nonlinear mixing, one of the fields was tuned to
a transition between an excited bound state and a pair of
closely spaced autoionizing states that had a frequency
separation much less than their decay widths.

The case of interference between two closely spaced
lifetime-broadened resonances, decaying to the same
continuum, was further analyzed by Harris !1989". He
pointed out that this will lead to lasing without inver-
sion, since the interference between the two decay chan-
nels eliminates absorption while leaving stimulated
emission from the states unchanged. Although we shall
not discuss the subject of lasing without inversion fur-
ther in this review, this work was an important step in
the story with which we are concerned. A breakthrough
was then made in the work of Imamoglu and Harris
!1989" when it was realized that the pair of closely

spaced lifetime-broadened resonances were equivalent
to dressed states created by coupling a pair of well-
separated atomic bound levels with a resonant laser field
!Fig. 4". They thus proposed that the energy-level struc-
ture required for quantum interference could be engi-
neered by use of an external laser field. Harris et al.
!1990" then showed how this same situation could be
extended to frequency conversion in a four-wave mixing
scheme among atomic bound states with the frequency
conversion hugely enhanced. This is achieved through
the cancellation of linear susceptibility at resonance as
shown in Fig. 1, while the nonlinear susceptibility is en-
hanced through constructive interference. The latter pa-
per was the first appearance of the term electromagneti-
cally induced transparency !EIT", which was used to
describe this cancellation of the linear response by de-
structive interference in a laser-dressed medium.

Boller et al. !1991", in discussing the first experimental
observation of EIT in Sr vapor, pointed out that there
are two physically informative ways that we can view
EIT. In the first we use the picture that arises from the
work of Imamoglu and Harris !1989", in which the
dressed states can be viewed as simply comprising two
closely spaced resonances effectively decaying to the
same continuum !Boller et al., 1991; Zhang et al., 1995".
If the probe field is tuned exactly to the zero-field reso-
nance frequency, then the contributions to the linear sus-
ceptibility due to the two resonances, which are equally
spaced but with opposite signs of detuning, will be equal
and opposite and thus lead to the cancellation of the
response at this frequency due to a Fano-like interfer-
ence of the decay channels. An alternative and equiva-
lent picture is to consider the bare rather than the
dressed atomic states. In this view EIT can be seen as
arising through different pathways between the bare
states. The effect of the fields is to transfer a small but
finite amplitude into state %2&. The amplitude for %3&,
which is assumed to be the only decaying state and thus
the only way to absorption, is thus driven by two
routes—directly via the %1&-%3& pathway, or indirectly via
the %1&-%3&-%2&-%3& pathway !or by higher-order variants".
Because the coupling field is much more intense than
the probe, this indirect pathway has a probability ampli-
tude that is in fact of equal magnitude to the direct path-1See the improved !!3" fit of Armstrong and Beers, 1975.

FIG. 3. Fano interferences of excitation channels into a con-
tinuum: !a" for a single autoionizing resonance; !b" for two
autoionizing states. FIG. 4. Interference generated by coherent coupling: left, co-

herent coupling of a metastable state %2& to an excited state %3&
by the dressing laser generates !right" interference of excita-
tion pathways through the doublet of dressed states %a±&
!Autler-Townes doublet" provided the decay out of state %2& is
negligible compared to that of state %3&.

636 Fleischhauer, Imamoglu, and Marangos: Electromagnetically induced transparency

Rev. Mod. Phys., Vol. 77, No. 2, April 2005

|a+i ! cos�|3i+ sin�|2i |a�i ! � sin�|3i+ cos�|2i

Cannot excite the system even if a resonant field (between |1> and |3>) is applied. This is 
due to the already applied dressing field between |2> and |3>. This phenomenon is called 

Electromagnetically Induced Transparency (EIT)


