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Systems with Many Particles

QM of 2 particles e.g.: Scattering.      Reduced to an effective 1-particle problem by going 


                                               to COM and relative co-ordinates.

Most systems around us consist of many particles: 

Jar of hydrogen gas,    Electrons in a metal,    Multi-electron Atoms,     Nuclear matter

QM of one particle e.g.:  Harmonic oscillator, single hydrogen atom etc.

Liquid Helium can flow without viscosity

The collapse of supernovae are arrested by Fermi pressure

Electrons in a metal can become superconducting

Many body quantum systems show interesting quantum effects: 

Many Particle systems can be in states 


that spontaneously break the symmetry 



of the underlying Hamiltonian 

The whole is more than the sum of its parts



What is different in Many-Particle Systems?

3 big differences when we extend our understanding of single particle QM to many particles:

1) The most-obvious way to write the Hilbert space of many particle systems in terms of the 


    Hilbert space of the constituent particles leads to unphysical states.

2) It is very hard to find eigenstates in a space with large no. of D.O.F., specially when  


   constituents interact with each other. 



3) In the N---> ∞ limit, we can have the phenomenon of spontaneous symmetry breaking with 


   no analogue in 1 particle QM.

We will show some approximate techniques to deal with 2).

We will show how one can work in a formalism which automatically takes care of 1). 

We will see an example of 3)



The Many-Particle Hilbert Space

|↵i = |k1i1 ⌦ |k2i2 ⌦ |k3i3....⌦ |kN iNExample with momentum basis states:

Particle 1 has momentum k1, particle 2 has momentum k2	



....... particle N has momentum kN

Description of a system of  N particles in CM: {q,p} ———>  {qi,pi} (a point in 6N dim. phase space).

1 particle QM: use |q> or |p> eigenstates as a basis to expand arbitrary states. 

Naive guess: A Tensor product of Hilbert space for each particle

Let         denote a complete set of basis states for the ith particle.   {|↵ii}

|↵i = |↵i1 ⌦ |↵i2 ⌦ |↵i3....⌦ |↵iN can be used as a basis set

Many Particle QM

Example with position basis states:

Particle 1 is at q1, particle 2 is at q2 ....... particle N is at qN



The Many-Particle Hilbert Space

OK if we are dealing with distinguishable particles


e.g. A three particle system of an electron, a proton, and a neutron (Deuterium).

If we are trying to describe a system of many identical indistinguishable particles the Hilbert


space spanned by the above basis states admits unphysical quantum many-body states.



To see this : and are distinct states

Let         denote a complete set of basis states for the ith particle.   {|↵ii}

|↵i = |↵i1 ⌦ |↵i2 ⌦ |↵i3....⌦ |↵iN can be used as a basis set

• But if the particles are indistinguishable, the numbering 1,2,..N is superfluous

• We can only talk about a particle each at x,y,z, not about 1st particle at x….

• So |α> and |β> should be the same state (upto a phase)

• Using the tensor product basis thus overcounts the states



A Hint from classical probability

We have 2 distinguishable boxes and 2 distinguishable balls --- red and blue. 


If all configurations are equally probable, what is the prob that box 2 has 2 balls?   

2 distinguishable boxes and 2 indistinguishable balls — both red.


If all configurations are equally probable, what is the prob that box 2 has 2 balls?

Tagged Balls: How to get the answer if we insist on tagging the balls (say 1st and 2nd) ?

Reqd. Probability:    1/4  {rb,0},{0,rb},{r,b},{b,r}Possible Config:

Reqd. Probability:    1/3  {rr,0},{0,rr},{r,r}Possible Config:

Prescription: Count all config obtained by permuting the tagging index. 


                            Divide by the number of permutations

{12,0},{0,12},{1,2},{2,1} [{12,0}+{21,0}]/2!,   [{0,12}+{0,21}]/2!,   [{1,2}+{2,1}]/2!

Can we extend this prescription to QM states of many-particle systems?



Identical particles and Hilbert Space
In QM, we have to fix amplitudes while adding equivalent states. No analogue in classical probability

Example with 2 particles and 2 single particle states,  |α>  and |β> |↵i|�i ei�|�i|↵i

Need to figure out transf. of states under permutation of particles

P12|↵i1|�i2 = ei�|�i1|↵i2 P 2
12|↵i1|�i2 = ei2�|↵i1|�i2

S2:  Permutation group of 2 objects (here the particles). This group has 2 1d irreps given by {1,-1}. 


!

The particles whose states transform according to {+1} are called Bosons and particles whose 
states transform according to {-1} are called Fermions

For Bosons:
1p
2
[|↵i1|�i2 + |�i1|↵i2]

1p
2
[|↵i1|�i2 � |�i1|↵i2]For Fermions:

give valid states. However, arbitrary superpositions of tensor product states are not allowed

Since P122= I

ei2� = 1 ) ei� = ±1



Spin and Exchange Statistics

Spin statistics theorem:  Particles with half-integer spins behave like Fermions and those with   


                              integer spins behave like Bosons. The correlation between spin and 


                              statistics comes from relativistic field theories. 

Some Consequences of Exchange Symmetry

•The relative angular momentum of a spin 0 particle about another identical one is even	


!

•Two fermions cannot occupy the same quantum state : Forms the basis for atomic structure,	


   band theory etc. 	


!

•For 2 electrons, the spin triplet state needs to be spatially antisymmetric (odd angular mom.)	


  while the singlet state needs to be spatially symmetric ( even angular mom)	


!

•Bosons can all occupy the lowest energy single-particle state: Bose Einstein Condensation 



3 Identical Particles
Permutations of 3 objects : S3

A

B C

R2

R1

R1: A —> B, B —> C, C —> A 

R2: A —> C, B —> A, C —> B 

A

BC R3

R5

R4

R3: A —> A, B —> C, C —> B 

R4: A —> B, B —> A, C —> C 

R5: A —> C, B —> B, C —> A 

S3 is isomorphic to D3

{E} {R {R

T 1 1 1

T 1 1 -1

T 2 -1 0

S3 is non-Abelian and has a 2d irrep

However, in nature we only get particles transforming acc. to T(1) and T(2)

 T(1)  is the identity irrep. and corresponds to Bosons



3 Identical Particles
Permutations of 3 objects : S3

A

B C

R2

R1

R1: A —> B, B —> C, C —> A 

R2: A <—> C, then B <—> A

A

BC R3

R5

R4

R3: A —> A, B —> C, C —> B 

S3 is isomorphic to D3

{E} {R {R

T 1 1 1

T 1 1 -1

T 2 -1 0
R4: A <—> B 

R5: A <—> C

R3:  B <—> C 

R1: A <—> B, then B <—> C

 T(2)  is the sign irrep. and corresponds to Fermions

Any permutation can be built up by many permutations of 2 objects at a time

For each such 2-perm put a - sign and keep multiplying the - signs. The ±1 that results is 


called the sign of the permutation.



Let us now generalize the formalism to N particles

1,2,3..... N —> ∞

We want to write down a state where there are particles in the single particle states 


|α1 >, |α2 >, |α3 >,…. |αN >

| Bi =
1p
N !

X

PN

PN [|↵1i ⇥ |↵2i....⇥ |↵N i]For Bosons:

| i = |↵1i ⇥ |↵2i....⇥ |↵N iStart with

Take all permutations (PN) of the particle no. index and add the states and normalize.

State symmetric under exchange of any 2 particles.

| F i =
1p
N !

X

PN

(�1)PNPN [|↵1i ⇥ |↵2i....⇥ |↵N i]For Fermions:

| i = |↵1i ⇥ |↵2i....⇥ |↵N iStart with

Take all permutations (PN) of the particle no. index and add the states with the sign of the 


permutation used to obtain it. Normalize.

State antisymmetric under exchange of any 2 particles.



1,2,3..... N —> ∞

| B(F )i =
1p
N !

X

PN

(⇣)PNPN [|↵1i ⇥ |↵2i....⇥ |↵N i]Combined Notation:

⇣ = ±1 for Bosons(Fermions)

Actual N particle Hilbert space is a subspace of the tensor product space

HN = H⌦H⌦ ....⌦H Single Particle


 Hilbert Space

Need to Project onto the subspace of states 


which are completely (anti) symmetric w.r.t.


exchange of particles to get the Hilbert space 


for N identical Bosons (Fermions)

BN

FN

Note: different normalization to make


 P a projection operator , P2=P

BN = PBHN FN = PFHN

PB(F )|↵1i ⇥ |↵2i....⇥ |↵N i = 1

N !

X

PN

(⇣)PNPN [|↵1i ⇥ |↵2i....⇥ |↵N i]

|↵1,↵2, ...↵N} =
p
N !PB(F )|↵1, ...↵ni

If             is a complete basis set in     ,                    is a complete basis set in   |↵1, ...↵ni HN |↵1,↵2, ...↵N} BN (FN )



Wavefunctions for Identical particles: 1,2,3..... ∞

Using co-ord. basis for β and some single particle basis for α (say HO states) ,the wfn

 

{↵i}(x1, ....xN ) =
1p

N !
Q

↵ n↵!
S[�↵i(xj)]

For Fermions, the Determinants are 


called Slater Determinants

We have constructed a basis set in the appropriate (anti)symmetric subspace of states

We can work with the tensor product basis and put the (anti)symmetry constraints on 


expansion co-efficients (wavefn.s)

Wavefunctions, Permanents and Determinants:

h�1, ...�N |↵1, ...↵N ) =
1p

N !
Q

↵ n↵!
S(h�i|↵ji) Mij = h�i|↵ji is a matrix

S(M) = Det(M)S(M) = Perm(M) for Bosons for Fermions

What is the wfn. of our (anti)symmetrized basis states in the original tensor product basis?



Wavefunctions for Identical Bosons and Fermions
Example with 3 Bosons and Harmonic oscillator states:  



!
A state where 1 boson occupies each of the states n=0,1,2 

 B(x1, x2, x3) =
1p
3!
Perm

0

@
�

0(x1) �

0(x2) �

0(x3)
�

1(x1) �

1(x2) �

1(x3)
�

2(x1) �

2(x2) �

2(x3)

1

A

 A state where 2 bosons occupies n=0, and the third one is in n=1

 B(x1, x2, x3) =
1p
3!2!

Perm

0

@
�

0(x1) �

0(x2) �

0(x3)
�

0(x1) �

0(x2) �

0(x3)
�

1(x1) �

1(x2) �

1(x3)

1

A

Example with 3 Fermions and Harmonic oscillator states:  


!A state where 1 fermion occupies each of the states n=0,1,2 

 F (x1, x2, x3) =
1p
3!
Det

0

@
�

0(x1) �

0(x2) �

0(x3)
�

1(x1) �

1(x2) �

1(x3)
�

2(x1) �

2(x2) �

2(x3)

1

A

Is there a way around (some other basis), where the (anti)symmetrization is automatically 
taken care of and we do not have to deal with these cumbersome objects?



Fermions and Pauli Exclusion Principle

For Bosons, the list |α1 >, |α2 >, |α3 >,…. |αN > can have repetitions, i.e. same SP state can appear



many times. Many Bosons can occupy the same SP quantum state.

| B(F )i =
1p
N !

X

PN

(⇣)PNPN [|↵1i ⇥ |↵2i....⇥ |↵N i]

For Fermions, the list |α1 >, |α2 >, |α3 >,…. |αN > CANNOT have repetitions (due to antisymmetry)



2 Fermions cannot occupy the same SP quantum state —— Pauli Exclusion Principle

Fermions make atomic physics, chemistry and solid state physics so diverse



Atoms
The Basic Hamiltonian for electrons:

Coulomb pot. of nucleus Spin Orbit coupling e-e repulsion

Part of e-e interaction can be absorbed into an 


effective screened potential from the nucleus

Screened Coulomb pot. Spin Orbit coupling e-e repulsion

Hydrogen atom :  No e-e interaction, no screening

H =
X

i

p2i
2m

� Ze2
X

i

1

ri
+⇠

X

i

~Li · ~Si+

0X

ij

e2

|ri � rj |

H =
X

i

p2i
2m

�Ze2
X

i

1

ri
+
X

i

U(ri)+⇠
X

i

~Li · ~Si+

0X

ij

e2

|ri � rj |
�

X

ij

U(ri)�ij



Fine Structure of Atomic Levels (H Atom)
The Coulomb problem has a large symmetry group [ O(4) for the spatial part]

Energy Levels  En ~ 1/n2

• Each n level has n fold l degeneracy of l=0,1,..n-1 (Coulomb special, nothing to do with rotn.)


!• Each l level is 2l+1 fold degenerate (m states) due to rotational symmetry.

!• In addition there is 2 fold degeneracy due to rotational symmetry in spin 1/2 space

Total Degeneracy 2n2

1s : n=1,l=0 :  2 spin states

2s,2p : n=2,l=0,1 :  8 states

3s,3p,3d : n=3,l=0,12 :  18 states

Hydrogen Atom

Lyman α line

Balmer α line

1s1/2 : n=1, j=1/2 :  2 states

2s1/2, 2p1/2 : n=2, j=1/2 :  4 states

2p3/2 : n=2, j=3/2 :  4 states

3s1/2, 3p1/2, : n=3, j=1/2 :  4 states

3p3/2, 3d3/2 : n=3, j=3/2 :  8 states

 3d5/2 : n=3, j=5/2 :  6 states

SO Coupling

Lyman α doublet

In Hydrogen, the 2s1/2 and 2p1/2 states are split due to interaction with vacuum polarization of 
QED. This shift, called Lamb shift, was calculated to a very high precision using QFT



Multi-Electron Atoms

Start with screened Coulomb potential : degeneracy of l levels are lifted

Stable electronic shells corresponding to filled orbitals.

(n,l) levels are filled according to Pauli exclusion principle starting from lowest one

What happens to atoms which have partially filled levels?       Think about electrons in the partially        


                                                                            filled level only

1s2 2s2 2p2

n= 1, l=0 level will have 2 e with spin ↑ and ↓Consider Carbon atom: 6 electrons

n= 2, l=0 level will have 2 e with spin ↑ and ↓

n= 2, l=1 level will have 2 e

Which l orbitals would be occupied and what is the spin config of the 2p electrons?

Each electron can occupy 3 X 2 =6 states, so there are 36 states in all

H =
X

i

p2i
2m

�Ze2
X

i

1

ri
+
X

i

U(ri)+⇠
X

i

~Li · ~Si+

0X

ij

e2

|ri � rj |
�

X

ij

U(ri)�ij


