
Advanced Quantum Mechanics

Quantum Mechanics of Many Particles

Rajdeep Sensarma


!

sensarma@theory.tifr.res.in

Lecture #14



Recap of Last Class

Multi Electron Atoms: The Case of Carbon


!
!
Occupation No. and Fock space


!
!
Creation Annihilation Operators


!
!
Writing Many Body States with creation annihilation operators


!
!
Writing Many Body Operators with creation annihilation operators


!



Operators in 2nd Quantized Notation
1 particle operators Â =

X
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Âi
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Some Important examples:
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where α and β are single particle states. 
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Operators in 2nd Quantized Notation
Hamiltonian of a non-interacting many particle system, each moving in an external potential
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How does the creation/annihilation operators change with change in the SP basis?
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Operators in 2nd Quantized Notation

Ĥ =
X
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a†pap +

X

pq

U(q)a†pap+qSo,

2nd term in H:
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Momentum is not conserved !! 

a†↵ =
X

m

a†mhm|↵i

Hamiltonian of a non-interacting many particle system, each moving in an external potential
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Potential scatters a particle from momentum state p+q to momentum state p with amplitude U(q)

q p

p+q



Operators in 2nd Quantized Notation
2-particle operators in


 1st Quantized notation

B̂ =
X

i 6=j

B̂ij

Using arguments similar to 1 part. operators:

B̂ij =
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Example: pairwise interaction between particles
V̂ =
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Interaction between particles with internal states V̂ =
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Example: Coulomb Interaction between spinful Fermions
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A bit of Stat Mech
If all the eigenstates and eigenenergies of the many-body Hamiltonian are known 

construct the thermal density matrix ⇢̂(T ) =
X

n

e��En |nihn| β = 1/T

T = 0 ——> only contribution from the ground state

low T ——> only contribution from low energy excitations ( E ~ T)

high T ——> system behaves classically

Beyond QM expectation, avg. over thermal ensemble with the Boltzmann weight

hÂiT = Tr⇢̂(T )Â =
X

n

e��Enhn|Â|ni

This is different from QM, where you add amplitudes of different terms

Where does this separation occur ?

⇢ =
N

V
! l = n�1/ddensity
inter-particle distance

A quantum particle confined 


within l has a kinetic energy EQ =

~2
2ml2

kBTQ =
~2n2/d

2m
QM is important to describe the system for T < TQ



A bit of Thermodynamics

Internal Energy U U = hHiT =
X

n

Ene
��En

dU = TdS � pdV

At T=0, U is just the energy of the ground state.
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So, at T=0, we can calculate pressure of the gas if GS energy is known for all densities
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Non-interacting Fermions

Ground State of N non-interacting free Fermions

| i =
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Ground State Energy: E =
X

k

k2

2m
h |c†k�ck�| i Consider 3D

=
k5F

10⇡2m

Fermi Surface: Surface separating the filled states from empty states 

Fermi Energy: Energy of the states at the Fermi surface, or highest energy of filled state
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Non-interacting Fermions

Ground State of N non-interacting free Fermions

| i =
Q
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Finite pressure at T=0 ——> compare with ideal classical gas PV = nkT
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Non Interacting Bosons: BEC
For Bosons at temp T, the occupation probability of a state with energy E is nB(E) =

1

eE/T � 1

For a dispersion E(k), the total occupation of non-zero k modes is N
ex

=
X

k

n
B

(E
k

) =
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dEg(E)n
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For a Density of state g(E) = AE↵ N
ex

= AT↵+1⇣(↵+ 1)�(↵+ 1) for α > 0

Examples of Bosonic systems which do not condense:  


!
Blackbody radiation 


!
Phonons (Lattice vibrations)



In these systems, total no. of bosons


 are not conserved and vary with temp. 


So the basic argument of BEC fails.


 

If the total number of particles is larger than this value, the rest goes to E=0 state.


!
This macroscopic occupation of E=0 state is called BEC.


!
This implies that we can fix the total number of particles independent of temperature etc.


!

Examples (not necessarily non-interacting):  


!
•BEC of Cold Alkali gases (Nobel Prize -- 2001)


!

•BEC in Superfluid He4 (Nobel Prize -- 1962)





Non Interacting Bosons: BEC at T=0

ground state for non-interacting Bosons: | i = (a†
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