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Recap of Last Class

Free Fermi Gas and Fermi Sea


!
!
Excitations : Particles and Holes


!
!
Interactions and Particle-Hole Excitations


!
!
Perturbation Theory for Coulomb Gas: Hartree and Fock Terms





Coulomb Gas: 1st Order Perturbation Theory
The Exchange or Fock Contribution
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Working out the integral �E(1) = � rs
8⇡4

This is Energy / unit volume

Energy / particle is then given by �E(1)/⇢ = � 3rs
8⇡2

Negative exchange correction —— electrons are farther apart and feel less Coulomb repulsion



2nd Order Perturbation Theory and divergences
Can we extend this calculation to 2nd order in pert theory?
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Evidently, the particles and holes created by the first application of H1 have to be annihilated 


by the 2nd application of H1

This involves pairing up all the c+ with c s with same momentum.
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At least one of the c+ s on the right term has to be matched with a c from the left term 


(or vice versa).

These pairings are not allowed, as the state |ψn > is the G.S.



2nd Order Perturbation Theory and divergences
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Both the c+ s on the right term has to be matched with c s from the left term (and vice versa).
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2nd Order Perturbation Theory and divergences
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Both terms involve an integral of the form
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F (k1, k2, q) Infrared divergence from q=0

This comes due to the long range rature of Coulomb potential



Screening to Rescue
If an external charge distribution is placed in a medium containing charges, the response of the 
medium includes rearranging its own charges to lower the potential energy. 

This leads to ideas of induced charges and displacement fields (D vs E) in electrodynamics.

We have been assuming that an electron is a charged particle placed in the E field of other 


electrons. In pert. theory we have assumed these other electrons to have the same distribution 


as if they are non-interacting. 

We need to take into account how the charge distribution rearranges to get the correct answers.


This process is non-perturbative and hence the simple pert. theory breaks down. 

However, if we can treat this redistribution in some approximation, we can deal with the potential


due to the redistributed charges perturbatively.



Induced Charges and Dielectric function
Consider the response of the electron gas to an externally imposed charge distribution
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Defines the q, ω dependent dielectric function 

Note: A - sign reqd to cast in the 


form H1 = -f(t) A

Our aim is to calculate 𝜌ind within linear response theory 
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Induced Charges and Dielectric function
Consider the response of the electron gas to an externally imposed charge distribution
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For translation invariant system, F.T. to get
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Dielectric function
"�1(q,!) = 1 + V (q)�⇢⇢(q,!)

From Linear Response Theory,
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Particle-Hole Excitations and Interactions
k

k-q
q

Number conserving excitations: 


push a Fermion from inside the FS to a momentum state outside FS

A particle with momentum k and a hole at k-q

State carries zero momentum

Energy of the state (measured from ground state energy)

State carries a net momentum q

Energy of the state (measured from ground state energy)

E = ✏k � ✏k�q

Effect of the Interaction term on the Fermi Sea

2 pairs of particle-hole excitations of spin σ and σ’

k’

k’ + q

-q

Note: k, k’ outside FS;  k-q, k’+q inside FS



Dielectric function
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Static RPA Screening

take ω=0 limit
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And hence

Effective Screened Interaction

As q —> 0 u(q/2) ——> 1 Veff (q) ! 1/�⇢⇢(q)

No divergence for pert. theory with screened interaction.
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