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Recap of Last Class
Scalar Fields and Lorentz invariant actions

Spin 1/2 representations and Weyl Spinors

Transformation properties of Weyl spinors

Complex Scalar Field and Charge conjugation



Rules for Possible Actions

Choose fields transforming according to particular irreps of the Lorentz group.

The transformation properties of the fields are frame independent, e.g. a scalar field remains a 
scalar field in all frames. 

The dynamics of relativistic particles is obtained from the action of the system, 


which is a function of the fields (operator valued functions of space-time)  and their space-time 
derivatives. 


!
In particular transition amplitudes can be written as a functional integral over field config. with 
each config contributing eiS

Construct possible Lorentz invariant quantities (Lorentz scalars) out of fields and their derivatives.


These provide possible Lagrangian Densities for describing the system.



For free particle, the action should be quadratic and Poincare invariant. It should involve atmost 


2nd order derivatives.

Our Aim: Construct possible Lorentz scalars out of Weyl Spinors



Weyl Fields and Grassmann Numbers
Since the (LH) Weyl Field transforms according to (1/2,0) irrep, we should be able to construct 


a Lorentz Scalar by taking antisymmetric products of 2 LH Weyl Fields

1/2 X 1/2 = 0 + 1SU(2) decomposition rule

For this we would like to consider two Weyl spinors  L(x, t) and �L(x, t)

and consider their products. We would like to construct products which are Lorentz invariant.

Under LT: �T
L�

2 L ! �T
LU

T
L (⇤)�2UL(⇤) L = �T

L�
2 L

UT
L (⇤)�2UL(⇤) = �2Since

Since the scalar is obtained by antisymmetrizing the product (look up exchange symmetry and 
SU(2)), we should get 0 if 𝜒 is same as ψ
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2 L = ( L1, L2)

✓
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◆
= �i L1 L2 + i L2 L1

= 0 if ψ is a complex no.

However, if the ψ field is a Grassmann number (anti-commuting number), there can be a 



non-trivial scalar representation formed out of the spin 1/2 field.



Grassmann Numbers

A complex no. can be represented as arbitrary linear combination of { 1,i} with real co-efficients

A binary representation of an integer

Representing numbers:

Start with basic objects (generators) 2n for all non-negative integer n

Define combination rules:  a) 2m 2n =2m+n   b) The objects commute with each other 2m 2n = 2n 2m 

Arbitrary linear combinations of these generators with co-efficients (0,1) represent integers

Complex Numbers:

Start with basic objects (generators) 1 and i 

Define combination rules:   1 * i  = i * 1 = i       i * i  = -1      1* 1 =1

Grassmann Numbers:

Start with set of 2n anti-commuting generators ⇣↵⇣� + ⇣�⇣↵ = 0 ⇣2↵ = 0

A Grassmann number is an arbitrary linear comb. of { 1, ζ𝛼1, …. ζ𝛼2n ,ζ𝛼1ζ𝛼2…. , ζ𝛼1ζ𝛼2… ζ𝛼2n } 

with complex co-eff. 

E.g. with 2 generators ζ1 andζ2 ⇠ = a0 + a1⇣1 + a2⇣2 + a12⇣1⇣2



Grassmann Numbers
Adding Grassmann Numbers:

Think of { 1, ζ𝛼1, …. ζ𝛼2n ,ζ𝛼1ζ𝛼2…. , ζ𝛼1ζ𝛼2… ζ𝛼2n } as independent “unit vectors” and add 

component-wise coefficients

⇣↵⇣� + ⇣�⇣↵ = 0 ⇣2↵ = 0

Multiplying Grassmann Numbers:

Multiply each component with every other component, and keep track of

The generators commute with complex numbers �⇣↵ = ⇣↵�

Select a set of n generators and associate a conjugate generator to each

(⇣↵)
⇤ = ⇣⇤↵ (�⇣↵)

⇤ = �⇤⇣⇤↵ (⇣↵⇣�)
⇤ = ⇣⇤�⇣

⇤
↵ = �⇣⇤↵⇣

⇤
�

Complex conjugation of Grassmann Numbers:

Define conjugation as an operation which conjugates both generators and co-efficients.



Grassmann Numbers
Functions of Grassmann numbers

Stick to 2 generators ζ and ζ*

Any analytic fn. of ζ* f(⇣⇤) = f0 + f1⇣
⇤ Any analytic fn. of ζ g(⇣) = g0 + g1⇣

Any analytic fn. of ζ and ζ* A(⇣⇤, ⇣) = a0 + a1⇣ + ā1⇣
⇤ + a12⇣

⇤⇣

Grassmann derivatives: Identical to complex deriv., BUT, for the derivative to act on the variable, the


 variable has to be anticommuted till it is adjacent to the derivative operator.

@

⇣
(⇣⇤⇣) = �@

⇣
(⇣⇣⇤) = �⇣⇤E.g.: @

⇣⇤
@

⇣
A(⇣⇤, ⇣) = �a12 = �@

⇣

@

⇣⇤
A(⇣⇤, ⇣)

Grassmann derivatives anticommute
Grassmann Integrals:Z

d⇣1 =

Z
d⇣⇤1 = 0

Z
d⇣⇣ =

Z
d⇣⇤⇣⇤ = 1Define

Like derivatives, the variable has to be anticommuted till it sits adjacent to integral operator 

E.g.: 
Z

d⇣⇤(⇣⇤) = f1

Z
d⇣⇤d⇣A(⇣⇤, ⇣) = �a12 =

Z
d⇣d⇣⇤A(⇣⇤, ⇣)

= h⇤
0g0 + h⇤

1g1

Scalar product of Grassmann Fn.s : g(⇣) = g0 + g1⇣ h(⇣) = h0 + h1⇣

hh|gi =
Z

d⇣⇤d⇣ e�⇣⇤⇣h⇤(⇣)g(⇣⇤) =

Z
d⇣⇤d⇣ (1� ⇣⇤⇣)(h⇤

0 + h⇤
1⇣)(g0 + g1⇣

⇤)



Weyl Fields and Lorentz Scalars

= �2U⇤
L(⇤)�

2�2 ⇤
L

If Weyl fields are represented by Grassmann numbers, we have seen that

 T
L�

2 L  T
R�

2 Rand are quadratic Lorentz scalars that can be formed. 

These would indicate the possibility of writing down “mass” terms for Weyl Fermions.

�2 ⇤
L ! �2U⇤

L(⇤) 
⇤
L

Consider the transformation properties of �2 ⇤
L  Lwhere     is a left-handed Weyl field

However,

= UR(⇤)�
2 ⇤

L

Thus σ2ψ*L transforms like a right handed Weyl Field

�2UL(⇤)�
2 = U⇤

R(⇤)

The mass term mixes left-handed and right handed Weyl fields. Let us first describe massless 
Fermions with Weyl fields and we will come back to massive fields later.

Thus the possible “mass” term has the form or m †
L Rm †

R L

Taking h.c. of above equation  T
L�

2 !  T
L�

2U †
R(⇤)  T

L�
2 !  †

R  T
R�

2 !  †
L



Lorentz vectors from Weyl Fields
It is possible to construct four-vectors (transf. acc. to (1/2,1/2) irrep) from products of Weyl Fields. 

If we can construct Lorentz vectors, we can take its norm, contract with other Lorentz vectors 


like ∂μ etc. to form possible Lorentz scalars

Consider the transformation properties of  †
L L

Under rotations, represented by Unitary operators, this is a scalar.

Under Boosts, UL(⇤) = e�i~�2 ·(~!�i~⌘)  †
L !  †
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L~� L

For Infinitesimal Boosts

=  †
L L � ⌘i 

†
L�

i L

'  †
L�

i L � 1

2
⌘j 

†
L(�

j�i + �i�j) L

=  †
L�

i L � ⌘i 
†
L L {�i,�j} = 2�ij



Lorentz vectors from Weyl Fields For Infinitesimal Boosts

 †
L L !  †

Le
�~�·~⌘ L '  †

L L � ~⌘ ·  †
L~� L =  †

L L � ⌘i 
†
L�

i L

 †
L�

i L !  †
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2~�·~⌘�ie�
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2~�·~⌘ L '  †

L�
i L � 1

2
⌘j 

†
L(�

j�i + �i�j) L =  †
L�

i L � ⌘i 
†
L L

Further, behaves as a 3-vector under rotations †
L�

i L

 †
L�

µ LConsider with σ0 being 2 X 2 identity matrix

Under Boosts, this behaves like a 4-vector � †
L�

µ L = ✏µ⌫ 
†
L�

⌫ L with ε0i = ηi

So in all is a Lorentz 4-vector i †
L�

µ L = i( †
L L, 

†
L�

i L)

Similarly is a Lorentz 4-vector i †
R�̄

µ R = i( †
R R,� †

R�
i R)

Since ( †
R R)

⇤ = � †
R R the above Grassmann bilinears are real 



(in the sense of conjugation of G No.s) 



Lorentz Scalars and Weyl Action
The simplest Lorentz scalar is formed by contracting the LV with ∂μ

The secret behind Dirac’s 


magic of 1st order Lorentz


invariant eqn.

@µ( 
†
L)�

µ L  †
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µ@µ( L)or
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i
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Quadratic Action for Left Handed Weyl Spinors

S =

Z
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4
x
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Similarly for Right Handed Weyl spinors 
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h
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Quadratic Action for Right Handed Weyl Spinors

Gradient Terms ——> Poincare Invariant



Field Equations for Weyl Fields
Quadratic Action for Left Handed Weyl Spinors

S =

Z
d

4
x

1

2
 

†
L�

µ
~

@µ L =

Z
d

4
x 

†
L�

µ
@µ L upto boundary terms

Field Equation: �µ@µ L = 0

Multiplying by i,

(�0i@t + �ii@i) L = 0

[i@t � ~� · ~p] L = 0

Similarly for RH Weyl Fermions

[i@t + ~� · ~p] R = 0

Since the Fermions are massless    i∂t ——> E = |p|

[1 +
~� · ~p
p

] R = 0[1� ~� · ~p
p

] L = 0

The Solution of Weyl Equation are eigenstates of the helicity operator given by
2~s · ~p
p

where s is the spin operator, with eigenvalues ± 1

Pauli Lubanski vector W 0 = �~s · ~p related to helicity in this case



Parity and Weyl Fermions

The helicity operator is a pseudoscalar under O(3), i.e. it changes sign under a parity


 transformation.

So a LH Weyl spinor with helicity +1 will transform to a RH Weyl spinor with helicity -1 under 


parity transformation.

A parity invariant theory (even for massless Fermions) requires both LH and RH Weyl fields.



Massless Dirac Fermions [ (1/2,0) + (0,1/2)
We have seen that parity mixes the left and right handed Weyl Fermions. Let us keep both fields


and construct a 4 component spinor. We want to write a parity invariant theory

 =

✓
 L

 R

◆
This transforms as (1/2,0) ⊕ (0,1/2)

This is called a Dirac spinor in the chiral basis

How does parity act on the Dirac spinor?

P = P

✓
 L

 R

◆
=

✓
 R

 L

◆
= �0 

�0 =

✓
0 1
1 0

◆
1 is 2 X 2 identity matrix

�2
0 = 1 1 is 4 X 4 identity matrix

Let us now write the theory of a left handed and a right handed Weyl Fermion together 

S =

Z
d

4
x

1

2
[ †

L�
µ
~

@µ L +  

†
R�̄

µ
~

@µ R] =

Z
d

4
x

1

2
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�0�
µ
~
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�i =

✓
0 ��i

�i 0

◆
where

=

Z
d

4
x

1

2
[ ̄�µ~@µ ]

 ̄ =  †�0

Pauli conjugate{�µ, �⌫} = 2gµ⌫

Clifford Algebra



Massless Dirac Fermions [ (1/2,0) + (0,1/2)

Check that we have a Lorentz invariant action Check that  ̄�µ Transforms like 4 vector

To do this, we need to find the form of Lorentz generators  Ji and Ki

L and R spinors transform


as spin 1/2 under rotn.

L and R spinors transform


differently under boostsKi =

 
�i�i

2 0

0 i�i

2

!
Ji =

 
�i

2 0

0 �i

2

!

U(⇤) = e�i( ~J·~!+ ~K·~⌘)

 ! U(⇤)  † !  †U†(⇤) and

with U †(⇤) = ei(
~J·~!� ~K·~⌘) U�1(⇤) = ei(

~J·~!+ ~K·~⌘)

Since 𝛾0 changes sign of K while commuting across, but keeps J unchanged, commuting it 


across U† will convert it to U-1

Thus  ̄ is a Lorentz scalar 

�0Ji = Ji�0 �0Ki = �Ki�0
J is pseudovector under rotn. 


K involves one space and 1 time co-ord —> 


changes sign under parity.

Note: 𝛾0 changes form under LT, but maintains its anticommutation with K in new basis

 †�0 !  †U †(⇤)�̃0 =  †�̃0U
�1(⇤)

 †�0 !  †U †(⇤)�̃0



Massless Dirac Fermions [ (1/2,0) + (0,1/2)

Consider the matrix �µ⌫ =
i

4
[�µ, �⌫ ] =

i

4
(2�µ�⌫ � {�µ, �⌫}) = i

2
(�µ�⌫ � gµ⌫14)

[�µ⌫ , �↵] =
i

2
[�µ�⌫ , �↵] =

i

2
(�µ[�⌫ , �↵] + [�µ, �↵]�⌫) =

i

2
(�µ[�⌫ , �↵]� [�↵, �µ]�⌫)

=
i

2
(�µ2�⌫�↵ � �µ2g⌫↵ � 2�↵�µ�⌫ + 2g↵µ�⌫) = i([�µ�⌫ , �↵]� �µg⌫↵ + g↵µ�⌫)

[�µ⌫ ,�↵� ] =

✓
i

2

◆2

[�µ�⌫ , �↵�� ] =

✓
i

2

◆2

([�µ�⌫ , �↵]�� + �↵[�µ�⌫ , �� ])

=
i2

2
(g⌫↵�µ�� � gµ↵�⌫�� + g⌫��↵�µ � gµ��↵�⌫)

= i(g⌫↵�µ� � gµ↵�⌫� + g⌫��↵µ � gµ��↵⌫)

𝚪μν satisfies the Lie Algebra for Lorentz generators

So [�µ⌫ , �↵] =
i

2
[�µ�⌫ , �↵] = i(g↵⌫�µ � g↵µ�⌫)

Sµ⌫ =
i

4
[�µ, �⌫ ]So

These relations only use Dirac Algebra and not specific forms for 𝛾 matrices



Massless Dirac Fermions [ (1/2,0) + (0,1/2)

Sµ⌫ =
i

4
[�µ, �⌫ ] [Sµ⌫ , �↵] =

i

2
[�µ�⌫ , �↵] = i(g↵⌫�µ � g↵µ�⌫)and

𝛾μ transforms as a Lorentz 4-vector

 ̄�µ transforms as a Lorentz 4-vector
S =

Z
d

4
x

1

2
[ ̄�µ~@µ ] is a Lorentz scalar

These relations only use Clifford Algebra and not specific forms for 𝛾 matrices

4 x 4 matrices satisfying Clifford Algebra is not unique

In fact any unitary transformation will keep                          invariant.{�µ, �⌫} = 2gµ⌫

Thus there are many equivalent basis to write Dirac spinors. The form of the spinors as well as 


the 𝛾 matrices depend on the basis, but the form of the action is invariant.

Chiral basis

 =

✓
 L

 R

◆
 c =

✓
�2 ⇤

R
��2 ⇤

L

◆
Charge conjugated spinor Majorana spinor

 M =

✓
 L

��2 ⇤
L

◆
Real spinor


(Real G No.s)

𝛾 matrices are purely imaginary



Massive Dirac Fields
Let us now come to the question of a mass term

Since  ̄ is a Lorentz scalar im ̄ = im( †
L R +  †

R L)

is a possible real Lorentz scalar mass term

This is not the only possible quadratic Lorentz scalar

We had earlier shown that  †
L R  †

R Land are individually Lorentz scalars

An independent scalar can be formed out of the difference of this two terms �m( †
L R �  †

R L)

Define projection operators to obtain Weyl Fermions from Dirac Fermions

In the chiral basis, following projection operators project the Dirac spinor into Left(Right) handed 
Weyl Fermions

L(R) =
1

2
(1± �5) �5 =

✓
1 0
0 �1

◆
�5 = i�0�1�2�3 =

i

24
✏µ⌫⇢��

µ�⌫�⇢��

𝛾5 transforms as a Lorentz scalar, but changes sign under parity i.e. transforms as a pseudo-scalar.

Note: Explicit for of 𝛾5 will be different in diff. basis, but its relation with 𝛾μ holds in all basis



Massive Dirac Fermions
�m( †

L R �  †
R L) ! �m

2
 ̄�5 

So the most general Dirac action for a massive field has the form 

S =
1

2

Z
d

4
x[ ̄�µ~@µ + im�m

0
�5 ]

If parity is a good symmetry of the system m’ = 0

S =
1

2

Z
d

4
x  ̄[�µ~@µ + im] =

1

2

Z
d

4
x  ̄[�µ@µ + im] 

upto surface terms

The Saddle point equation for this action is [i�µ@µ �m] = 0

Multiply by 𝛾0, and use (𝛾0)2=1

[i(�0)2@t + i�0~� ·r�m�0] = 0 �0~� = ~↵, �0 = �

i@t = [�i~↵ ·r+m�] Dirac Equation of 1 paticle Rel. QM



Global Symmetries of Dirac Action

S =
1

2

Z
d

4
x  ̄[�µ~@µ + im] =

1

2

Z
d

4
x  ̄[�µ@µ + im] 

 ! ei� Global phase rotation

Chiral Transformation  ! ei��5 
The action is invariant under these transformations

The conserved Noether current is given by

jµ = i ̄�µ jµ5 = i ̄�µ�5 

and the corresponding conserved charges are 

Q = i

Z
d

3
x ̄�

0
 = i

Z
d

3
x [ †

L L +  

†
R R]

Q5 = i

Z
d

3
x ̄�

0
�5 = i

Z
d

3
x [ †

L L �  

†
R R]



Things we have not touched
• Constructing creation/annihilation operators and Fock space from fields

• Calculating Experimentally measureable quantities

Scattering amplitude as transition amplitude —> Calculation through fn integrals.

• Interacting theories

• Finite Chemical potential ——> finite density of particles

• Imaginary time and finite temperature calculations ——> Correlation fn. and response fn.

Perturbation Theory calculation of 2n point functions —> scattering, correlation fn. etc.

Saddle Points, symmetry breaking and effective theories

Renormalization —— the other guiding principle

Symmetry Considerations and possible interaction terms.

Wait for QFT-I  next semester. 


