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The Basic Idea of Scattering

Initial State

Free particle with mom. k
and energy E

Target recoil with mom. k-k’
and energy E-E’

Examples: ® Almost all of high energy experiments ...

® Neutron Scattering for materials, light scattering

® Rutherfords original experiment of scattering of « particles by gold foil
® Scattering of electrons by impurities

® Interaction potential between the target and the incident particles

_ Nuclear potentials, atomic potentials, beyond SM fterms?
Info obtained

from scattering: @ Spatial structure of target matter distribution

Rutherford and nucleus, neutrons and spin patterns,

form and structure factors
® Excitation Spectrum of the target

Inelastic Scattering -- energy dumped into target



Scattering Cross Section

momentum K
and energy E

Measureable Quantities:

Differential Cross Section:

do No. of particles scattered into the solid angle df2 around k= (0,9) per unit time
—dQ) =
d$2

Number of incident particles crossing unit area normal fo z dirn. per unit time

Total Cross Section: Obtained by integrating the differential cross section over all solid angles
Assumptions:

® The particle interacts with the target through a finite range potential, so that far away from
the target (both for incident and scattered beams) a free particle state is obtained.

Exception: Coulomb Scattering — long range potential .... will not treat in this course



Collision of Particles
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Shooting particles at targets look like 2 moving particles colliding with each other in COM frame.
Thus scattering problem also tells us about say interaction between atoms in a gas, where there
is no fixed target to shoot at.



Lab vs. C.O.M. Frame

C.O.M. velocity: v = V1
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Relation between differential scattering cross sections in lab vs C.O.M. frame

Physically, the same number of particles are scattered towards the same solid angle,
irrespective of which frame we choose to measure it.
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Setting up the Problem: Free Particles

A free particle with a given momentum will remain in that momentum state forever.

Time Evolution U(E,t7 k—’/’t/) _ 5(E B k—*,)e_i%(t_t/) wk(t) _ /ddk/U(E,t,lg,t’)w(k/,t/)

Operator:
Retarded R 1
R Y NS 7, — i o (t—t G (k, = 2
propagator GO (Rt R ) = ~i®(t — t)8(F — F)e (t=t) o) = (o ior — )

This is the causal propagator, b (t) = i/ddk/GR(E b Lt t’)w(lg’ ')
T o) ’ Y y Y

which propagates forward in time

The Scattering Amplitude is related to the

matrix element of the

Inifial State Time Evolution Operator

in presence of Interaction
Free particle

with mom. k
and energy E

between different momentum states



Interactions and Propagator

V(t)
Potential seen by the
incident particle

Initial State

'® We assume that the potential is turned on from O at t= -co.

® It is also switched off as t --> co.

' ® The exact manner of turning on/ switching off does not matter as long as it is done far in
past/future.

®This mimics the fact that at large negative and positive times, the particle is out of the

interaction region

Formal Solution:

) (r, 1)) = d / dr'GE(r, t;r't)|p(r' 1)) ——> Free initial state

\ (as yet unknown) propagator in

presence of interaction



The Wave Packet Picture

Free Prop.
We are talking about initial and final states with with K

fixed momenta. This sets the boundary cond. for
the scattering problem

We are also talking about a particle localized
in real space, which “feels” the potential as it
moves in time

Need to think about scattering of wave-packets.
E.g. tfime spent in interaction region only has
meaning for wave-packets, not for k eigenstates

Will continue to talk about what happens to an
initial k state. Can reconstruct what happens to
wave-packet by linear superposition.




Interactions and Propagator Vi(t) = e Moty (f)e—iHot
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Interactions and Propagator
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Now — GE(r ;' t') = —iO(t — t')e Holt=t)

n'" order term:  combine the exp(-iHo ti)and exp(iHoti,1)  Insert fdri |ri ><rj =1 in between

(n+1) propagators : (n+1) factors of i, and time ordering takes care of theta fn.
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where

G(?VGR:/dTl/dthgz(T,t;Tl,tl)V(tl)Ggg(?“l,tl;T/,t,)

is to be thought of in Matrix Multiplication sense [matrix in (r,t) co-ord]



Pictorial Representations and Feynman Diagrams
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® Should not be literally interpreted as trajectories of particles
® OK as long as you read it as “free propagation followed by scattering event followed by ...”

® Remember to integrate over all co-ordinates (space+time or momentum+time) in between
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Scattering Matrix (S-Matrix)

Back to the scattering problem. Initial State

Incident particle in a free particle

(momentum )state (in-state), which

will be scattered by the potential into different
free-particle (momentum)states (out states) far from
the interaction region.

S-matrix is the matrix, with indices corresponding to a free-particle (say momentum)
basis, whose matrix element (say «f), gives the probability amplitude of obtaining the
state |g.> after scattering, if we started with |ps> as the incident state.

Sap = (Paltrs” (t = 00))= Lttso0,tr—0oiG™(at, t; B, ')

®S Matrix is unitary (Probability Conservation)

®S Matrix commutes with generators of symmetries of the full Hamiltonian (incl. potential),
which are represented by unitary operators (rotation, translation etc).

® For time reversal invariant Hamiltonians, (—|S| — ) = (B8|S|q)

Reciprocity Property



S-Matrix and T (Transition) Matrix

Sap = (Pald (t = 00))= Lty o041 —oiGT (e t; B, 1)
Remember G =G+ GFVGE+GFVGEVGT + ... = G+ GFVGE

There is a part in GR which is just free propagation. Makes sense to isolate this from parts
which depend on the potential

The part involving V has the unknown interacting propagator GR sitting in it. We would like to
write this in terms of Go® and push the effects of multiple scattering into a new object T.

G = Gi' + GF'VG" = G§ + Gi TGy

Free Prop.

.I.
TR G T captures

all the
effects of V
incl. multiple
scatterings

Will later relate T to measureables



The T Matrix

The defining Equation: VG= TGg T=VGGo™
G Go GoVGo ? Q Q@ GoVGoVGo
= — ———— I S G : — t— : > —_——

+ ...
Now G =Gog+ GoVGo+. =[1— GOV]_IGO
So T=V[1-GV] ' =V4+VG)V +VG VGV +... =V +VGT

T \Y; VGoV VGoVGoV

_ 9 Q @ ©Q Q Q Q Q H
L S - S——

Integral Equation Form:
T(r,t;r',t) = 6(r —r")o(t — )V (r,t) + V(r,t)Gg(r, t;7" , )V (', )

-1- /(idrl(itl‘/(’l‘,t)G(]){(T,t;’f‘l,tl)V(Tl,tl)G(I){(Tl,tl;T/,t,)V(T,,t,) + ...



Elastic Scattering and S(E)

Elastic scattering: energy of the particle is conserved, i.e. E'=E, |k'|=[k|.

V is essentially const. in time, other than being turned off at large +(-) To. Vir,t) =V(r)

In this case Fourier Transform:

G(r,t;r', ) = GE(r,r,t = ¥) GR(a, B,w) = G (e, B,w) + Y Gf(a,7,w) V4G (6, B,w)
Yo
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As t-t' becomes large, the fn
oscillates rapidly unless E=k?/2m
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Incident wave

Involves G rather than Go Scattered to different out states



Scattering (S) and Transition (T) Matrices

- dw OB N (i
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Inaden’r wave

Involves G rather than Go Scattered ’ro'iFeren’r out states

Let us define the Transition (T) matrix such that : (VGR)xs=(TGoR ).

'iLf.t%x‘tfﬂ_x(?ib‘(t'_t,) /(Ifl /(HQG(I]{(,\".’,f.,tl)kak(fl,tg)G(I){(k, tg,t,)

= —iLtt 00,413 —oo€ (5~ (F)/2m)tg—i(E-K"/2m)¢ / = / dt, / At Tirx (w)e (@™ K'Y /2m)ts gilw—k?/2m)tz
’ J 27, _

= —2mid(E — (K')?/2m)é(E — k*/2m) Ty (E) Tk'(E) incorporates all the effects
of scattering in the interction region

Sz (E) = 6(E — (K')?/2m)d(E — k* /2m) (65 — 2miTy i (E))

Free Pro
Relation between S With K o7

and T matrix




