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The Basic Idea of Scattering
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Examples: • Almost all of high energy experiments ... 

• Neutron Scattering for materials, light scattering

• Rutherford’s original experiment of scattering of α particles by gold foil 

• Scattering of electrons by impurities

Info obtained 

from scattering:

• Interaction potential between the target and the incident particles
Nuclear potentials, atomic potentials, beyond SM terms?

Rutherford and nucleus, neutrons and spin patterns,

                             form and structure factors

• Spatial structure of target matter distribution 

Inelastic Scattering -- energy dumped into target
• Excitation Spectrum of the target



Scattering Cross Section
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Differential Cross Section:

d�

d⌦
d⌦ =

No. of particles scattered into the solid angle     around              per unit timed⌦ k̂0 = (✓,�)

Number of incident particles crossing unit area normal to z dirn. per unit time

Total Cross Section: Obtained by integrating the differential cross section over all solid angles

Measureable Quantities:

• The particle interacts with the target through a finite range potential, so that far away from 

  the target (both for incident and scattered beams) a free particle state is obtained.


Exception: Coulomb Scattering —— long range potential …. will not treat in this course


Assumptions:



Collision of Particles

Two body problem:
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Reduced Mass:

Shooting particles at targets look like 2 moving particles colliding with each other in COM frame.

Thus scattering problem also tells us about say interaction between atoms in a gas, where there

is no fixed target to shoot at.
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Effective 1-body problem in relative

co-ordinates with reduced mass and energy



Lab vs. C.O.M. Frame
C.O.M. velocity: v0 =

m1

m1 +m2
v1

C.O.M. Frame:

v̄1 =
m2v

m1 +m2
v̄2 = v0

Conservation of  momentum and energy:

v̄02 = v̄2 v̄01 = v̄1

tan(�1) =
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m2

Relation between differential scattering cross sections in lab vs C.O.M. frame

Physically, the same number of particles are scattered towards the same solid angle, 

irrespective of which frame we choose to measure it.

�L(�1,�) sin�1d�1d� = �C(✓,�) sin ✓d�d✓ �L(�1,�) =
(1 + �2

+ 2� cos ✓)1/2

|1 + � cos ✓| �C(✓,�)



Setting up the Problem: Free Particles
A free particle with a given momentum will remain in that momentum state forever. 

Time Evolution

 Operator: U(~k, t; ~k0, t0) = �(~k � ~k0)e�i k2

2m (t�t0)  k(t) =

Z
ddk0U(~k, t; ~k0, t0) (~k0, t0)
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The Scattering Amplitude is related to the

 


matrix element of the 


Time Evolution Operator

 in presence of Interaction


between different momentum states 

Retarded 
Propagator
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This is the causal propagator, 

which propagates forward in time

GR(~k, t; ~k0, t0) = �i⇥(t� t0)�(~k � ~k0)e�i k2

2m (t�t0)
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Z
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Interactions and Propagator

Initial State
Fina
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ate

V(t)

t

Potential seen by the 

incident particle

• We assume that the potential is turned on from 0 at t= -∞. 


• It is also switched off as t --> ∞. 


• The exact manner of turning on/ switching off does not matter as long as it is done far in        

  past/future.


•This mimics the fact that at large negative and positive times, the particle is out of the   

  interaction region

| (+)(r, t)i = i

Z
dr0GR(r, t; r0t0)|�(r0, t0)i Free initial state

(as yet unknown) propagator in 
presence of interaction

Formal Solution:



The Wave Packet Picture
Free Prop.

Free
 Pro
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with k
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We are talking about initial and final states with

 fixed momenta. This sets the boundary cond. for 

the scattering problem

We are also talking about a particle localized

in real space, which “feels” the potential as it

moves in time

Will continue to talk about what happens to an 
initial k state. Can reconstruct what happens to 

wave-packet by linear superposition.

Need to think about scattering of wave-packets.

E.g. time spent in interaction region only has 
meaning for wave-packets, not for k eigenstates

partial-wave phase shifts for the l ! 0 and 2 channels
with total projection quantum number mF ! 4 when two
jF ! 2; mF ! 2i atoms collide in a total magnetic field of
0.22 mT, the bias field of this experiment (there is negli-
gible difference at zero field). Using Eq. (1) these phase
shifts give the s-wave, d-wave, and total cross sections
shown in Fig. 3(b). In Fig. 3(c) we present the fraction of
scattered atoms Nsc=Ntot versus the collision energy as
measured in our experiments. Since Nsc=Ntot is on the
order of 40% close to the resonance (i.e., large depletion),
the number of scattered particles is not proportional to the
total elastic cross section !"T#. As a result, the observed
d-wave resonance peak is not very pronounced even
though the total cross section grows by a factor of $4
with respect to the zero energy limit. However, when the
effect of depletion is included [21] we obtain good agree-
ment between the experimental and theoretical scattering
fractions [Fig. 3(c)]. The model predicts the d-wave reso-
nance to occur at 275 "K, and the measurements are
consistent with this to within 25 "K.

As is obvious from Fig. 2, the scattered particles are
emitted in spatial patterns which depend on the collision
energy. It is possible to relate these patterns to the differ-
ential cross section when the effects on the particle dis-
tribution of the harmonic potential and the projection
onto the imaging plane are accounted for. As a result of

the scattered particles expanding in an anisotropic har-
monic potential, the projected halos seen in Fig. 2 have
elliptical envelopes rather than the circle expected for a
free-space Newton sphere as shown in Fig. 1. However,
due to the cylindrical symmetry about the collision axis
(which is perpendicular to the optical axis of our imaging
system), full 3D tomographical information on the scat-
tering can be extracted from the 2D absorption images
via the inverse Abel transform [17,22]. Applying Abel
inversion to the absorption images gives us the angular
particle distribution in the trap at the time of image
acquisition, to which the distribution at the time of colli-
sion (the free-space distribution) is related in a straight-
forward manner [23].

In Fig. 4(a) we show polar plots of the probability
density nsc"#; T# / d!=d! for a scattered particle to be
emitted at the polar angle # as determined from the
absorption images in Fig. 2. The angular distributions
for different temperatures have been normalized with
respect to each other such that

R
nsc"#; T#d! ! 1 for all

T and were determined from the Abel inverted images by
counting the particles within angular bins at a unit sphere
transformed to the quarter period ellipsoid via the rela-
tion in Ref. [23]. For comparison we present in Fig. 4(b)
the temperature development of the normalized differen-
tial cross section as predicted by Eq. (1) using the partial-
wave shifts from the previously described model. The
scattering patterns of Figs. 4(a) and 4(b) show the same
behavior and the minor discrepancies between the experi-
mental and theoretical distributions may be attributed to

FIG. 3. Dependence on collision energy. (a) The s (dotted
line) and d (dashed line) partial-wave phase shifts from the
theoretical model. (b) The s-wave (dotted line), d-wave
(dashed line), and total (solid line) cross sections calculated
from the model partial-wave phase shifts. (c) The measured
scattered fraction of atoms Nsc=Ntot (filled circles). The black
curve shows the fraction as given by the model cross section
when depletion of the colliding atom clouds is accounted for.

FIG. 2 (color online). Absorption images acquired at a quar-
ter of a radial trap period after the collision of two doubly spin-
polarized Rb clouds (visible as dark ellipses) for various
collision energies. The halos of scattered particles have ellip-
tical envelopes since they are evolving in an anisotropic har-
monic trap which is weakest in the horizontal direction
(z direction). At the selected time of acquisition the scattering
halos have the maximum radial excursion in the trap.
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Interactions and Propagator
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Interactions and Propagator
= �i⇥(t� t0)e�iH0t
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where

is to be thought of in Matrix Multiplication sense [matrix in (r,t) co-ord]

nth order term:    combine the exp(-iH0 ti)and exp(iH0ti+1) 

(n+1) propagators : (n+1) factors of i, and time ordering takes care of theta fn.
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Pictorial Representations and Feynman Diagrams
Time
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• Should not be literally interpreted as trajectories of particles


• OK as long as you read it as “free propagation followed by scattering event followed by ....” 


• Remember to integrate over all co-ordinates (space+time or momentum+time) in between 

GR
0 (r, t; r1, t1)GR

0 (r1, t1; r
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Feynman Diagrams
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Scattering Matrix (S-Matrix)

Initial State
Fina

l St
ate

Back to the scattering problem.


Incident particle in a free particle 

(momentum )state (in-state), which 

will be scattered by the potential into different 

free-particle (momentum)states (out states) far from 

the interaction region.


S-matrix is the matrix, with indices corresponding to a free-particle (say momentum) 
basis, whose matrix element (say αβ), gives the  probability amplitude of obtaining the 
state |φα> after scattering, if we started with |φβ> as the incident state.

S↵� = h�↵| (+)
� (t ! 1)i

•S Matrix is unitary (Probability Conservation)


•S Matrix commutes with generators of symmetries of the full Hamiltonian (incl. potential), 

  which are represented by unitary operators (rotation, translation etc).


• For time reversal invariant Hamiltonians, h�↵|S|� �i = h�|S|↵i
Reciprocity Property



S-Matrix and T (Transition) Matrix
S↵� = h�↵| (+)

� (t ! 1)i

GR = GR
0 +GR

0 V GR
0 +GR

0 V GR
0 V GR

0 + . . . = GR
0 +GR

0 V GRRemember

There is a part in GR which is just free propagation. Makes sense to isolate this from parts 

which depend on the potential

The part involving V has the unknown interacting propagator GR sitting in it. We would like to 

write this in terms of G0R and push the effects of multiple scattering into a new object T.

Free Prop.

with G0

Free
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with 
G0

T captures 
all the 

effects of V 
incl. multiple 
scatterings

T
Will later relate T to measureables



The T Matrix

T�1 = V �1 �G0

The defining Equation:   VG= TG0 T=VGG0-1

=
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V

+

VG0VG0V

 +  ....

VG0VT

+=

Integral Equation Form: 



Elastic Scattering and S(E)
Elastic scattering: energy of the particle is conserved, i.e. E’=E, |k’|=|k|.

V is essentially const. in time, other than being turned off at large +(-) T0.

Fourier Transform:In this case

Now

As t-t’ becomes large, the fn

 oscillates rapidly unless E=k2/2m

Incident wave


Scattered to different out statesInvolves G rather than  G0



Scattering (S) and Transition (T) Matrices 

Let us define the Transition (T) matrix such that : (VGR)αβ=(TG0R)αβ 

Incident wave


Scattered to different out statesInvolves G rather than  G0

Relation between S 

and T matrix

Free Prop.
Free

 Pro
p

with k
with k

’

Tkk’(E) incorporates all the effects

 of scattering in the interction region


