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Recap of Last Class

Basic Set up of Scattering —> cross-section

Time Evolution in presence of potential
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Elastic Scattering and S(E)
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Incident wave

Involves G rather than Go Scattered Jro'iﬂceren’r out states



Scattering (S) and Transition (T) Matrices
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Inaden’r wave

Involves G rather than Go Scattered ’ro'iFeren’r out states

Let us define the Transition (T) matrix such that : (VGR)xs=(TGoR ).
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= —2mid(E — (K')?/2m)é(E — k*/2m) Ty (E) Tk'(E) incorporates all the effects
of scattering in the interction region

Sz (E) = 6(E — (K')?/2m)d(E — k* /2m) (65 — 2miTy i (E))
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Relation between S With K o7

and T matrix




The scattered state (1D)

Incident particles with mom k

A eikx C oikx Outgoing particles with mom K

> >

B k% Do Incident particles with mom -k

Outgoing particles with mom -k

C [ A C A Nice Properties: Unitarit
=S = (1 — 2miT P ' 14
(B) (D) (B) ( ””(D) Symmetry

S Matrix T Matrix

|t]2 is transmission coeff for left incidence

Easily related

to reflection
and transmission

Ir|? is reflection coeff for left incidence
t r
1t']2 is transmission coeff for right incidence co-effs

Ir’|2 is reflection coeff for right incidence

Note: Scattering states have particular boundary cond. The eigenstate with hard walls at x= + L
is different from scattering soln. since it follows different boundary cond.



The scattered state (1D)

t 7 Fl2+ 12 = P22 =1
S = ;o Unitarity of S
rot tr'* + rt™* =0

Time Reversal Invariance

A eikx C eikx B* eikx
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B e—ukx D e—lkx A* e-ﬁ(x
If this is a solution
S*S =1 r=r

Reflection (Parity) Invariance r=r' , t =1t

D* eikx

C* e-ikx

So is this



The scattered state (1D)

C A
( g > — M( g ) Transfer Matrix Easy to calculate ( B ) = 5( D )
S Matrix
A~ L Det(S) Si g_ L ( Det(M) M
522 _521 1 M22 —M21 1
Calculation for a repulsive square well V

Parity + TR invariance —> Sy = S22

A e‘kx C eikx

Follow any Std. QM Book
(Schiff, Merzbacher etc.)
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The scattered state (3D)

Assume: incident particles have momentum Kk along z direction
i.e. energy of particles is E=k?/2m

By definition of the propagator P(F) = i/d3T7GR(F,7:;,E)¢(7") o is the incident state.

Now, the S matrix connects the incoming and the outgoing states

[Yout) = S|Pin) Using S(E) = I +iGy (E)VG™(E) = I +iGg (E)TGy (E)

P(r) = / d>7r /(1 / d>r ’("R (7,71, E)T'(r1, -'Ffz,E)G(])"'("F'g,"/‘_;,E)(,f)(ﬁ)

— f‘)+/d3r1/d3F2G0 (7,71, E)T (11,72, E)$(T2)

Lo meivszl"?_’:'l magnhitude of momentum
Now in 3D Gg(F,r',E) = — — I
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zk:|r 71|
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The scattered state (3D) r

zk|7‘ 71 |
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For geometry of scattering 1
7] > ||
, For elastic scattering
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le—Fll . ikr —'I:k?"'f"l
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Now, incident state  ¢(7) = 2m)372° 1 1
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So, far from the
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T Matrix and cross section (3D)
Incident Outgoing

wave spherical wavefront
) = gy 5+ - ()
. . ! Scattering
Y(r) = (27:)3/2 [e“‘"’+ — f(, "’)] amplitude ¢ £ B = —an®mT (K, k, E)
o G = MERP = UEE PP Ll (rensuraatie Guantity



Unitarity of S and Optical Theorem /
0
>

POtot

A7
Imaginary part of fwd scattering amplitude, which measures how many particles are lost in
this dirn., is equal to total number of scattered particles. This is just a restatement of
probability conservation.

Statement of Optical Theorem  Im[f(# = 0)] =

Unitarity of S SST = [1 — 2miT|[1 + 2miTH) = 1
1 —2mi(T —TY) + 4n?TTT =1 TT = —%(T Tt)
Take expectation in p states
/(p')zdp'é[E — (p')?/2m] /dQ Tm,,TTH = —2—(T~~ = TI..)
i
/dQ’| L2 = —llm[T«
pp’ - pp
_ = p / 2 / p
Use 1 = A2, PP I'm|f55] = Ar / df) |f~ © = — /dQ dQ’ = Eo'tot

Note: Prob Conservation —> o1t Should include both elastic and inelastic cross section



Singular Potentials and T matrix

V(r)
The defining Equation: VG= TGo
Hard Sphere Model: '/'"\\
The FT of V does not exist, —
impossible to work with V(r) = oo 0<r<a -,
= 0 r>a
Vi = (K'|V]k) = (K'|V]¢r)

T = (k’\V\w,(f)) Actual Solution in presence of potential

The wfn in presence of the potential vanishes at r=a and is finite for r>a.

So Tk is well defined

The system responds to the presence of the infinite potential by avoiding the region
where the potential is infinite.

The T matrix incorporates this information and is non-singular.



Born Approximation
2" Born Approx.

T'=V +VG)V +VGVGV + ...
Born. Approx/ —_

1t Born Approx.

P - 9 @ Scattering Ampl. depends onl
Scattering Amplitude: g 0= P — 5l = 2psin attering Ampl. depends only on q
® Scattering Amplitude is real

® do/dQ indep. of sign of V

- 9 oo
f.p') = f(0) = _47T2mTp*/7ﬁ = —47T2m‘/;;/,ﬁ = 7771/ drrV (r)sin gr
0

Start with the T matrix:

v\

Validity: IVGoV| << |V ® Weak potentials
® High Energy of Incident particles

( Time spent in interaction region
is small, single scattering dominates)

Violation of Unitarity:  fpp'is real: what happens to optical theorem ?
LHS ~ V2
. 1
mp / dY|T~|* = —;1 m| Tz Need 2"d Born Approx on RHS to restore optical theorem

P



Partial Wave Analysis

Rotationally Invariant Potentials: Want to expand in angular momentum states
Simultaneous eigenkets of Ho, L2 and L, |E,l,m) with (E"lI',m'|E,l,m)=0(E — E")0w dmm

Use Wigner Eckart Theorem: (E,I',m/|T|E,l,m) = T;6;: Omm:

Decouples in different | channels, independent of m

Scattering Amplitude:

f(—)ap_;) — _47T2m<];,’T‘ﬁ> — _47T2m/dEZ<];;|Evlam>T1l<Ealam’p>

lm

Using
(E,l,m|p) ! Y, (p)d(E — p?/2m) f(7.p) il > T(E) Y"M(p)Y,™(p)

y by TT — T m ) - T T

p \/fnTp ARV p p l l l

The initial dirn. can be taken along z axis (6=0, ¢=0) and the final dirn. along (6, =0)

— 7 4m® m (N (A
@) =——> Ti(E) Y, (p")Y;™(p)

P 121 + 1
) oo Y, (6,0) = 4—; P;(cos 0) .m0 /ﬁ'
fB.P) =—=> (214 1)Ty(E)P(cosb) L

[=0



Partial Wave Analysis

rTi(E = p*/2m)

Define Partial Scattering Amplitude fi(p) = —

Z (20 + 1) fi(p)Pi(cos0)
1=0
Scattered Wavefunction:| (+)/= g €T Lo
w (T) T (27T)3/2 € _|_ f(p 7p)
eiﬁ-f’ _ ipr cos 0 __ Z il(QZ 4 1)jl (pT)Pl(COS 9) Spherical Bessel Functions, consist of

both outgoing and incoming waves.
Solution of Radial Schrodinger Eqn.
for free particles in 3D

[

6i(pr—l7r/2) _ 6—i(pr—l7r/2)

21pr

1 ez'pr o e—i(pr—lw) 6z'pr
() (7) =
' (F) 2m)i? [;(ZZ + 1)P;(cos ) ( Sipr + fi(p) . )]
Scatterer changes co-efficient
(cos 0) ( | e’ e‘f"(m‘”)> of outgoing wave.
— 1+ 2ipfi(p —
3/2 2ip | Pl r Incoming wave is unaffected




Partial Wave Analysis: S and T Matrices

S matrix is the overlap of the incoming free-particle state and the outgoing scattered state

i1pr —i(pr—Im) .
() 3/2 C(;f’e) ([1 + 2ipfi(p))— — —— ) Si(p) = 1+ 2ipfi(p)

® Probability conservation ---> Incoming flux = Outgoing flux

® Spherical Symmetry ---> L conservation ---> For every | channel, flux in = flux out

Unitarity of S : 1S1(p)| =1 = Si(p) = > phase shift in | channel

The phase shifts encode all the information about the scattering potential.

Partial Scattering fpy = S -1 o1 W singi(p) 1
Amplitude: 2up 2ip p ~ peotdy(p) — ip
plitude:
- e WPging(p) 1 1
T Matrix: Ti(p) = — - = reotaip) —
Scattering e (P sin §;(p)  Interference of different

Amplitude: f(8) = (21 +1)Py(cos b)

z P | channels



Partial Wave Analysis: Cross Section

Total Cross Section:
2 1
”— / i / A(cos 0) | £(0) 2
0 —1

1

2 .
= p—;T 2(21 + 1)(20" + 1) sin §;(p) sin 6y (p) et (P) =0 (P)] / d(cos 6)P;(cos )Py (cos )
1 —1
_ dm S0+ 1) sin® 5,(p) Interference washed out
p? 5

In angular integration

Quick Check of Optical Theorem:

i01(P)] g;
Z (20 + 1)Imle | sin 5l(p)Pl(COSH _) =P,

l p 477



Partial Wave Analysis: Cross Section

do

B 5 (20+1)(2I" + 1)
=R =Y

= P;(cos 0) Py (cos 0) sin §;(p) sin 8 (p)el01P) =0 ()]
%

Note that different | channels contribute additively to scattering amplitude. The differential
cross-section includes interference between different channels.
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Interference of s and d partial scattering amplitudes in a collision of 2 Rbg7 atom clouds.
Scattered atoms are in the halos. [ From : N. Thomas et. al, PRL 93, 173201 (2004) ]



