Advanced Quantum Mechanics

Rajdeep Sensarma

sensarma@theory.tifr.res.in

Scattering Theory

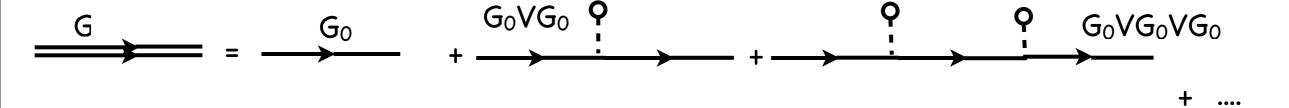
Ref : Sakurai, Modern Quantum Mechanics Taylor, Quantum Theory of Non-Relativistic Collisions Landau and Lifshitz, Quantum Mechanics

Recap of Last Class

Basic Set up of Scattering -> cross-section

Time Evolution in presence of potential

$$G^{R} = G_{0}^{R} + G_{0}^{R}VG_{0}^{R} + G_{0}^{R}VG_{0}^{R}VG_{0}^{R} + \dots = G_{0}^{R} + G_{0}^{R}VG^{R} \qquad (G^{R})^{-1} = (G_{0}^{R})^{-1} - V$$



S Matrix

$$S_{\alpha\beta} = \langle \phi_{\alpha} | \psi_{\beta}^{(+)}(t \to \infty) \rangle = Lt_{t \to \infty, t' \to -\infty} iG^{R}(\alpha, t; \beta, t')$$

Elastic Scattering and S(E)

$$S_{\vec{k},\vec{k'}}(E) = \delta_{\vec{k'},\vec{k}} \delta(E - k^2/2m) + iLt_{t \to \infty,t' \to -\infty} \sum_{k_1} \int \frac{d\omega}{2\pi} G_0^R(k,\omega) V_{kk_1} G^R(k_1,k',\omega) e^{i(E-\omega)(t-t')}$$

Incident wave

Scattered to different out states

Scattering (S) and Transition (T) Matrices

$$S_{\vec{k},\vec{k'}}(E) = \delta_{\vec{k'},\vec{k}} \delta(E - k^2/2m) + iLt_{t \to \infty,t' \to -\infty} \sum_{k_1} \int \frac{d\omega}{2\pi} G_0^R(k,\omega) V_{kk1} G^R(k_1,k',\omega) e^{i(E-\omega)(t-t')}$$

Incident wave

Involves G rather than Go

Let us define the Transition (T) matrix such that : $(VG^R)_{\alpha\beta} = (TG_0^R)_{\alpha\beta}$

$$iLt_{t\to\infty,t'\to-\infty}e^{iE(t-t')}\int dt_1\int dt_2G_0^R(k',t,t_1)T_{k'k}(t_1,t_2)G_0^R(k,t_2,t')$$

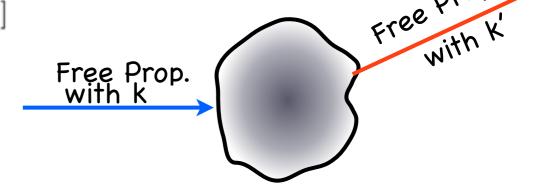
$$=-iLt_{t\to\infty,t'\to-\infty}e^{i(E-(k')^2/2m)t}e^{-i(E-k^2/2m)t'}\int \frac{d\omega}{2\pi}\int dt_1\int dt_2T_{k'k}(\omega)e^{-i(\omega-(k')^2/2m)t_1}e^{i(\omega-k^2/2m)t_2}$$

$$= -2\pi i \delta(E - (k')^2/2m) \delta(E - k^2/2m) T_{k'k}(E)$$

 $T_{kk'}(E)$ incorporates all the effects of scattering in the interction region

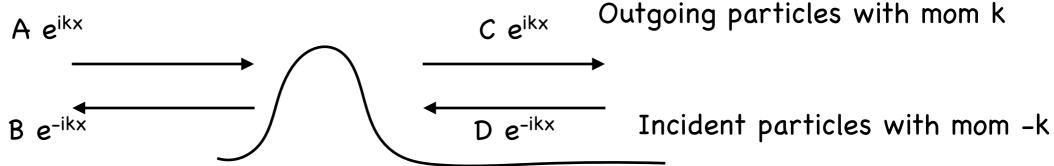
$$S_{\vec{k}\vec{k'}}(E) = \delta(E - (k')^2/2m)\delta(E - k^2/2m)[\delta_{\vec{k}\vec{k'}} - 2\pi i T_{k'k}(E)]$$

Relation between S and T matrix



The scattered state (1D)

Incident particles with mom k



Outgoing particles with mom -k

$$\left(\begin{array}{c} C \\ B \end{array}\right) = S\left(\begin{array}{c} A \\ D \end{array}\right) \qquad \left(\begin{array}{c} C \\ B \end{array}\right) = (1-2\pi iT)\left(\begin{array}{c} A \\ D \end{array}\right) \qquad \text{Nice Properties: Unitarity,}$$
 Symmetry
$$\text{S Matrix} \qquad \qquad \text{T Matrix}$$

It|2 is transmission coeff for left incidence

$$S=\left(\begin{array}{cc}t&r\\r'&t'\end{array}\right) \qquad \begin{array}{c} |\mathbf{r}|^2 \text{ is reflection coeff for left incidence}\\\\ |\mathbf{t}'|^2 \text{ is transmission coeff for right incidence}\\\\ |\mathbf{r}'|^2 \text{ is reflection coeff for right incidence}\\ \end{array}$$

Easily related to reflection and transmission co-effs

Note: Scattering states have particular boundary cond. The eigenstate with hard walls at $x = \pm L$ is different from scattering soln. since it follows different boundary cond.

The scattered state (1D)

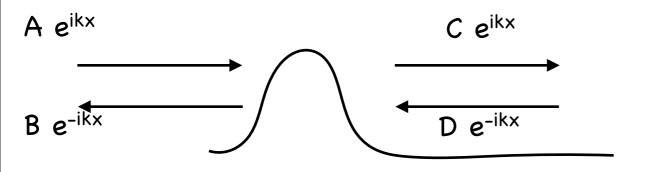
$$S = \left(\begin{array}{cc} t & r \\ r' & t' \end{array} \right)$$

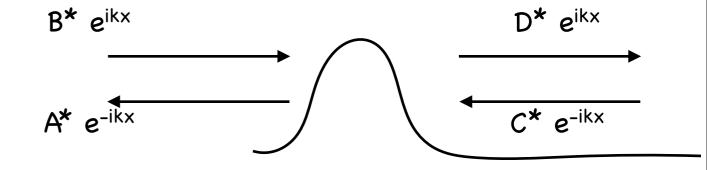
Unitarity of S

$$|r|^2 + |t|^2 = |r'|^2 + |t'|^2 = 1$$

 $tr'^* + rt'^* = 0$

Time Reversal Invariance





So is this

If this is a solution

S*S = 1 r = r'

Reflection (Parity) Invariance

$$r=r'$$
, $t = t'$

The scattered state (1D)

$$\left(\begin{array}{c} C \\ D \end{array}\right) = M \left(\begin{array}{c} A \\ B \end{array}\right) \qquad \text{Transfer Matrix}$$

Easy to calculate

$$\left(\begin{array}{c} C \\ B \end{array}\right) = S \left(\begin{array}{c} A \\ D \end{array}\right)$$

S Matrix

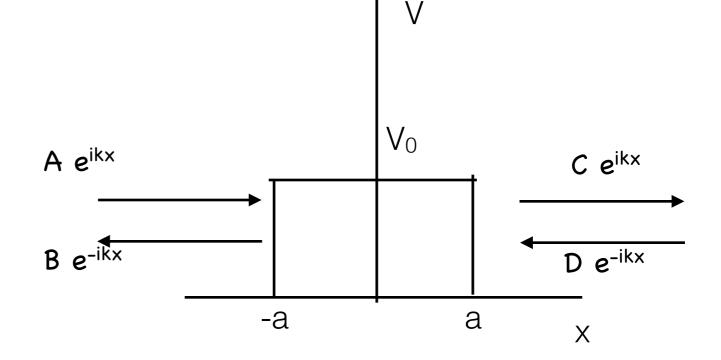
$$M = \frac{1}{S_{22}} \begin{pmatrix} Det(S) & S_{12} \\ -S_{21} & 1 \end{pmatrix}$$

$$M = \frac{1}{S_{22}} \begin{pmatrix} Det(S) & S_{12} \\ -S_{21} & 1 \end{pmatrix} \qquad S = \frac{1}{M_{22}} \begin{pmatrix} Det(M) & M_{12} \\ -M_{21} & 1 \end{pmatrix}$$

Calculation for a repulsive square well

Parity + TR invariance \longrightarrow S₁₁ = S₂₂

Follow any Std. QM Book (Schiff, Merzbacher etc.)



$$\begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} (\cos 2k'a) + \frac{\epsilon}{2}\sin 2k'a \end{pmatrix} e^{2ika} \qquad \frac{\eta}{2}\sin 2k'a \\ -\frac{\eta}{2}\sin 2k'a \qquad (\cos 2k'a) - \frac{\epsilon}{2}\sin 2k'a \end{pmatrix} e^{-2ika} \begin{pmatrix} C \\ D \end{pmatrix}$$

$$\begin{pmatrix}
\frac{\eta}{2}\sin 2k'a \\
(\cos 2k'a) - \frac{\epsilon}{2}\sin 2k'a
\end{pmatrix} e^{-2ika}
\end{pmatrix}
\begin{pmatrix}
C \\
D
\end{pmatrix}$$

$$k' = [2m(E-V_0)]^{1/2}$$
 $k = [2mE]^{1/2}$

$$\varepsilon = i (k^2 + k'^2)/2kk'$$

$$\varepsilon = i (k^2 + k'^2)/2kk'$$
 $\eta = -i (k^2 - k'^2)/2kk'$

The scattered state (3D)

Assume: incident particles have momentum k along z direction i.e. energy of particles is $E=k^2/2m$

By definition of the propagator

$$\psi(\vec{r}) = i \int d^3\vec{r'} G^R(\vec{r}, \vec{r'}, E) \phi(r')$$

 ϕ is the incident state.

Now, the S matrix connects the incoming and the outgoing states

$$\begin{split} |\psi_{out}\rangle &= S|\phi_{in}\rangle \qquad \text{Using} \qquad S(E) = I + iG_0^R(E)VG^R(E) = I + iG_0^R(E)TG_0^R(E) \\ \psi(\vec{r}) &= \phi(\vec{r}) + i\int d^3\vec{r}_1 \int d^3\vec{r}_2 \int d^3\vec{r'}G_0^R(\vec{r},\vec{r}_1,E)T(\vec{r}_1,\vec{r}_2,E)G_0^R(\vec{r}_2,\vec{r'},E)\phi(\vec{r'}) \\ &= \phi(\vec{r}) + \int d^3\vec{r}_1 \int d^3\vec{r}_2G_0^R(\vec{r},\vec{r}_1,E)T(\vec{r}_1,\vec{r}_2,E)\phi(\vec{r}_2) \end{split}$$

Now in 3D
$$G_0^R(\vec{r},\vec{r'},E) = -\frac{me^{i\sqrt{2mE}|\vec{r}-\vec{r'}|}}{2\pi|\vec{r}-\vec{r'}|}$$
 ma

magnitude of momentum

$$k = \sqrt{2mE}$$

$$\psi(\vec{r}) = \phi(\vec{r}) - \frac{m}{2\pi} \int d^3\vec{r}_1 \int d^3\vec{r}_2 \frac{e^{ik|\vec{r} - \vec{r}_1|}}{|\vec{r} - \vec{r}_1|} T(\vec{r}_1, \vec{r}_2, E) \phi(\vec{r}_2)$$

The scattered state (3D)

$$\psi(\vec{r}) = \phi(\vec{r}) - \frac{m}{2\pi} \int d^3\vec{r}_1 \int d^3\vec{r}_2 \frac{e^{ik|\vec{r} - \vec{r}_1|}}{|\vec{r} - \vec{r}_1|} T(\vec{r}_1, \vec{r}_2, E) \phi(\vec{r}_2)$$

For geometry of scattering

$$|\vec{r}| \gg |\vec{r}_1|$$

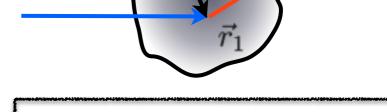
$$|\vec{r} - \vec{r}_1| = r[1 - 2\hat{r} \cdot \vec{r}_1/r + r_1^2/r^2]^{\frac{1}{2}} \simeq r - \hat{r} \cdot \vec{r}_1$$

Now, incident state
$$\phi(\vec{r}) = \frac{1}{(2\pi)^{3/2}} e^{i \vec{k} \cdot \vec{r}}$$

So, far from the interaction region

$$\psi(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \left[e^{i\vec{k}\cdot\vec{r}} + \frac{e^{ikr}}{r} \left(-\frac{m}{2\pi} \right) \int d^3\vec{r}_1 \int d^3\vec{r}_2 e^{-i\vec{k'}\cdot\vec{r}_1} e^{i\vec{k}\cdot\vec{r}_2} T(\vec{r_1},\vec{r_2},E) \right]$$

$$\psi(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \left[e^{i\vec{k}\cdot\vec{r}} + \frac{e^{ikr}}{r} \left(-4\pi^2 m \right) T(\vec{k'}, \vec{k}, E) \right]$$



For elastic scattering

$$\vec{k} = k\hat{z}$$
 $\vec{k'} = k\hat{r}$

So
$$e^{ik|ec{r}-ec{r}_1|}=e^{ikr}e^{-iec{k'}\cdotec{r}_1}$$
 and $rac{1}{|ec{r}-ec{r}_1|}\simeqrac{1}{r}$

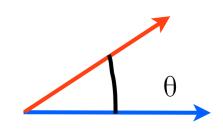
T Matrix and cross section (3D)

$$\begin{array}{c} \text{Incident} & \text{Outgoing} \\ \text{wave} & \text{spherical wavefront} \\ \\ \psi(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \left[e^{i\vec{k}\cdot\vec{r}} + \frac{e^{ikr}}{r} \left(-4\pi^2 m \right) T(\vec{k'},\vec{k},E) \right] \\ \\ \psi(r) = \frac{1}{(2\pi)^{3/2}} \left[e^{i\vec{k}\cdot\vec{r}} + \frac{e^{ikr}}{r} f(\vec{k},\vec{k'}) \right] & \text{Scattering} \\ \\ \text{amplitude} & f(\vec{k},\vec{k'}) = -4\pi^2 m T(\vec{k'},\vec{k},E) \end{array}$$

Differential Cross
$$\frac{d\sigma}{d\Omega} = |f(\vec{k},\vec{k'})|^2 = |f(E,\vec{k}\cdot\vec{k'})|^2$$
 S Matrix —> T Matrix —> Cross Section (Measureable Quantity)

Unitarity of S and Optical Theorem

Statement of Optical Theorem
$$\operatorname{Im}[f(\theta=0)] = \frac{p\sigma_{tot}}{4\pi}$$



Imaginary part of fwd scattering amplitude, which measures how many particles are lost in this dirn., is equal to total number of scattered particles. This is just a restatement of probability conservation.

Unitarity of S
$$SS^\dagger = [1-2\pi iT][1+2\pi iT^\dagger] = 1$$

$$1 - 2\pi i(T - T^{\dagger}) + 4\pi^2 T T^{\dagger} = 1$$

$$TT^{\dagger} = -\frac{1}{2\pi i}(T - T^{\dagger})$$

Take expectation in p states

$$\int (p')^2 dp' \delta[E - (p')^2/2m] \int d\Omega' T_{\vec{p}\vec{p'}} T_{\vec{p'}\vec{p}}^{\dagger} = -\frac{1}{2\pi i} (T_{\vec{p}\vec{p}} - T_{\vec{p}\vec{p}}^{\dagger})$$

$$mp \int d\Omega' |T_{\vec{p}\vec{p'}}|^2 = -\frac{1}{\pi} Im[T_{\vec{p}\vec{p}}]$$

Use
$$T_{ec pec p'}=rac{-1}{4\pi^2m}f_{ec pec p'}$$

Use
$$T_{\vec{p}\vec{p'}} = \frac{-1}{4\pi^2 m} f_{\vec{p}\vec{p'}}$$
 $Im[f_{\vec{p}\vec{p}}] = \frac{p}{4\pi} \int d\Omega' |f_{\vec{p}\vec{p'}}|^2 = \frac{p}{4\pi} \int d\Omega' |\frac{d\sigma}{d\Omega'}| = \frac{p}{4\pi} \sigma_{tot}$

Note: Prob Conservation —> σ_{tot} should include both elastic and inelastic cross section

Singular Potentials and T matrix

The defining Equation: $VG = TG_0$

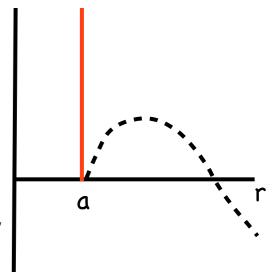
The FT of V does not exist, impossible to work with

$$V_{kk'} = \langle k'|V|k\rangle = \langle k'|V|\phi_k\rangle$$

Hard Sphere Model:

$$V(r) = \infty \quad 0 < r < a$$

$$= 0 \quad r > a$$



 $T_{kk'} = \langle k'|V|\psi_k^{(+)}\rangle$ Actual Solution in presence of potential

The wfn in presence of the potential vanishes at r=a and is finite for r>a.

So T_{kk'} is well defined

The system responds to the presence of the infinite potential by avoiding the region where the potential is infinite.

The T matrix incorporates this information and is non-singular.

Born Approximation

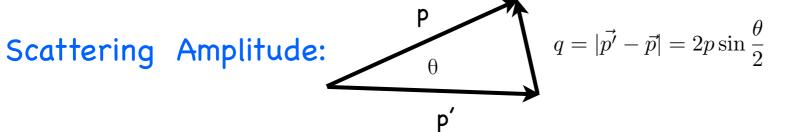
2nd Born Approx.

Start with the T matrix:

$$T = V + VG_0V + VG_0VG_0V + \dots$$

Born. Approx/ 1st Born Approx.

3rd Born Approx.



$$q = |\vec{p'} - \vec{p}| = 2p\sin\frac{\theta}{2}$$

- Scattering Ampl. depends only on q
- Scattering Amplitude is real
- $d\sigma/d\Omega$ indep. of sign of V

$$f(\vec{p}, \vec{p'}) = f(\theta) = -4\pi^2 m T_{\vec{p'}, \vec{p}} = -4\pi^2 m V_{\vec{p'}, \vec{p}} = \frac{2m}{q} \int_0^\infty dr r V(r) \sin qr$$

 $|VG_0V| \ll |V|$ Validity:

- Weak potentials
- High Energy of Incident particles

(Time spent in interaction region is small, single scattering dominates)

Violation of Unitarity: $f_{pp'}$ is real: what happens to optical theorem?

$$mp \int d\Omega' |T_{\vec{p}\vec{p}'}|^2 = -\frac{1}{\pi} Im[T_{\vec{p}\vec{p}}]$$

 $mp \int d\Omega' |T_{\vec{p}\vec{p'}}|^2 = -rac{1}{\pi} Im[T_{\vec{p}\vec{p}}]$ Need 2nd Born Approx on RHS to restore optical theorem

Partial Wave Analysis

Rotationally Invariant Potentials: Want to expand in angular momentum states

Simultaneous eigenkets of H₀, L² and L_z $|E,l,m\rangle$ with $\langle E',l',m'|E,l,m\rangle=\delta(E-E')\delta_{ll'}\delta_{mm'}$

Use Wigner Eckart Theorem: $\langle E, l', m' | T | E, l, m \rangle = T_l \delta_{ll'} \delta_{mm'}$

Decouples in different I channels, independent of m

Scattering Amplitude:
$$f(\vec{p},\vec{p'}) = -4\pi^2 m \langle \vec{p'}|T|\vec{p}\rangle = -4\pi^2 m \int dE \sum_{lm} \langle \vec{p'}|E,l,m\rangle T_l \langle E,l,m|\vec{p}\rangle$$

Using

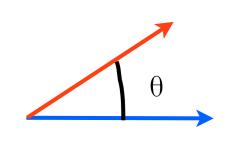
$$\langle E, l, m | \vec{p} \rangle = \frac{1}{\sqrt{mp}} Y_l^{m*}(\hat{p}) \delta(E - p^2/2m) \qquad f(\vec{p}, \vec{p'}) = -\frac{4\pi^2}{p} \sum_{lm} T_l(E) \ Y_l^m(\hat{p'}) Y_l^{m*}(\hat{p})$$

The initial dirn. can be taken along z axis (θ =0, φ =0) and the final dirn. along (θ , φ =0)

$$f(\vec{p}, \vec{p'}) = -\frac{4\pi^2}{p} \sum_{lm} T_l(E) \ Y_l^m(\hat{p'}) Y_l^{m*}(\hat{p})$$

$$f(\vec{p}, \vec{p'}) = -\frac{\pi}{p} \sum_{l=0}^{\infty} (2l+1) T_l(E) P_l(\cos \theta)$$

$$Y_l^m(\theta, 0) = \sqrt{\frac{2l+1}{4\pi}} P_l(\cos \theta) \delta_{m0}$$



Partial Wave Analysis

Define Partial Scattering Amplitude $f_l(p) \equiv -\frac{\pi T_l(E=p^2/2m)}{p}$ $f(\vec{p}, \vec{p'}) = \sum_{l} (2l+1)f_l(p)P_l(\cos\theta)$

Scattered Wavefunction:
$$\psi^{(+)}(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \left[e^{i\vec{p}\cdot\vec{r}} + \frac{e^{ipr}}{r} f(\vec{p'},\vec{p}) \right]$$

$$e^{i\vec{p}\cdot\vec{r}} = e^{ipr\cos\theta} = \sum_{l} i^{l}(2l+1)j_{l}(pr)P_{l}(\cos\theta)$$

$$pr \gg 1$$
 $j_l(pr) \rightarrow \frac{e^{i(pr-l\pi/2)} - e^{-i(pr-l\pi/2)}}{2ipr}$

Spherical Bessel Functions, consist of both outgoing and incoming waves. Solution of Radial Schrodinger Eqn. for free particles in 3D

$$\psi^{(+)}(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \left[\sum_{l} (2l+1) P_l(\cos\theta) \left(\frac{e^{ipr} - e^{-i(pr-l\pi)}}{2ipr} + f_l(p) \frac{e^{ipr}}{r} \right) \right]$$

$$= \frac{1}{(2\pi)^{3/2}} \sum_{l} (2l+1) \frac{P_l(\cos \theta)}{2ip} \left([1 + 2ipf_l(p)] \frac{e^{ipr}}{r} - \frac{e^{-i(pr-l\pi)}}{r} \right)$$

Scatterer changes co-efficient of outgoing wave. Incoming wave is unaffected

Partial Wave Analysis: S and T Matrices

S matrix is the overlap of the incoming free-particle state and the outgoing scattered state

$$\psi^{(+)}(\vec{r}) = \frac{1}{(2\pi)^{3/2}} \sum_{l} (2l+1) \frac{P_l(\cos\theta)}{2ip} \left([1 + 2ipf_l(p)] \frac{e^{ipr}}{r} - \frac{e^{-i(pr-l\pi)}}{r} \right) \qquad S_l(p) = 1 + 2ipf_l(p)$$

- Probability conservation ---> Incoming flux = Outgoing flux
- Spherical Symmetry ---> L conservation ---> For every I channel, flux in = flux out

Unitarity of
$$S_l$$
: $|S_l(p)| = 1 \Rightarrow S_l(p) = e^{2i\delta_l(p)}$ phase shift in l channel

The phase shifts encode all the information about the scattering potential.

Partial Scattering Amplitude:

$$f_l(p) = \frac{S_l(p) - 1}{2ip} = \frac{e^{2i\delta_l(p)} - 1}{2ip} = \frac{e^{i\delta_l(p)}\sin\delta_l(p)}{p} = \frac{1}{p\cot\delta_l(p) - ip}$$

T Matrix:

$$T_l(p) = -\frac{e^{i\delta_l(p)}\sin\delta_l(p)}{\pi} = \frac{1}{\pi}\frac{1}{\cot\delta_l(p) - i}$$

$$f(\theta) = \sum_l (2l+1) P_l(\cos \theta) \frac{e^{i\delta_l(p)} \sin \delta_l(p)}{p} \qquad \begin{array}{c} \text{Interference of different} \\ \text{l channels} \end{array}$$

Partial Wave Analysis: Cross Section

Total Cross Section:

$$\begin{split} \sigma &= \int_0^{2\pi} d\phi \int_{-1}^1 d(\cos\theta) |f(\theta)|^2 \\ &= \frac{2\pi}{p^2} \sum_{ll'} (2l+1)(2l'+1) \sin\delta_l(p) \sin\delta_{l'}(p) e^{i[\delta_l(p)-\delta_{l'}(p)]} \int_{-1}^1 d(\cos\theta) P_l(\cos\theta) P_{l'}(\cos\theta) \\ &= \frac{4\pi}{p^2} \sum_l (2l+1) \sin^2\delta_l(p) \end{split}$$
 Interference washed out in angular integration

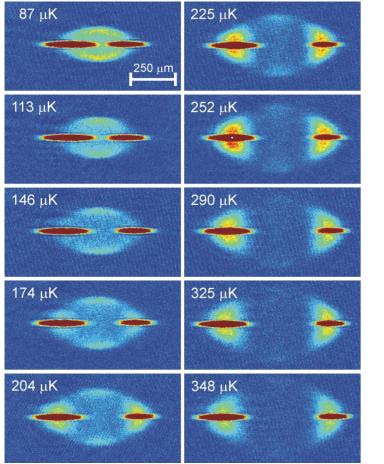
Quick Check of Optical Theorem:

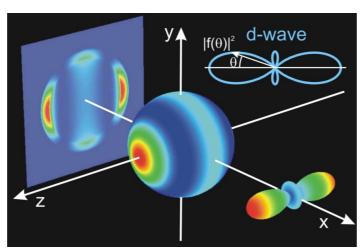
$$\operatorname{Im}[f(\theta=0)] = \sum_{l} \frac{(2l+1)\operatorname{Im}[e^{i\delta_{l}(p)}]\sin\delta_{l}(p)}{p} P_{l}(\cos\theta=1) = \frac{p}{4\pi}\sigma$$

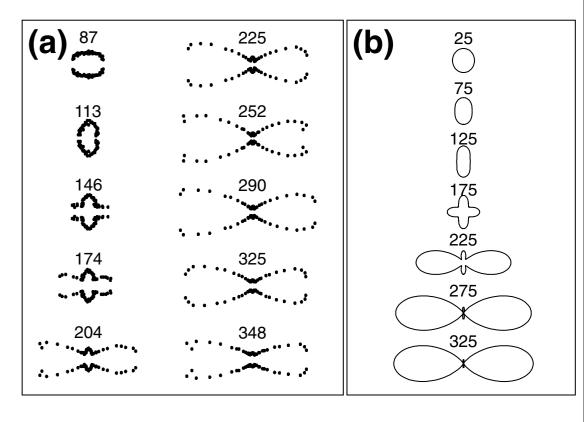
Partial Wave Analysis: Cross Section

$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2 = \sum_{ll'} \frac{(2l+1)(2l'+1)}{p^2} P_l(\cos\theta) P_{l'}(\cos\theta) \sin\delta_l(p) \sin\delta_{l'}(p) e^{i[\delta_l(p) - \delta_{l'}(p)]}$$

Note that different I channels contribute additively to scattering amplitude. The differential cross-section includes interference between different channels.







Interference of s and d partial scattering amplitudes in a collision of 2 Rb_{87} atom clouds. Scattered atoms are in the halos. [From: N. Thomas et. al, PRL 93, 173201 (2004)]