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Recap of Last Class
Basic Set up of Scattering ——> cross-section

Time Evolution in presence of potential
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S Matrix

Elastic Scattering and S(E)

Incident wave


Scattered to different out statesInvolves G rather than  G0



Scattering (S) and Transition (T) Matrices 

Let us define the Transition (T) matrix such that : (VGR)αβ=(TG0R)αβ 

Incident wave


Scattered to different out statesInvolves G rather than  G0

Relation between S 

and T matrix

Free Prop.
Free

 Pro
p

with k
with k

’

Tkk’(E) incorporates all the effects

 of scattering in the interction region



The scattered state (1D)
Incident particles with mom k

A eikx C eikx

B e-ikx D e-ikx

Outgoing particles with mom -k

Incident particles with mom -k

Outgoing particles with mom k

S Matrix T Matrix

Nice Properties: Unitarity,

                    Symmetry

Note: Scattering states have particular boundary cond. The eigenstate with hard walls at x= ± L

        is different from scattering soln. since it follows different boundary cond.

Easily related 

to reflection 

and transmission

 co-effs

|t|2 is transmission coeff for left incidence

|r|2 is reflection coeff for left incidence

|t’|2 is transmission coeff for right incidence

|r’|2 is reflection coeff for right incidence



The scattered state (1D)

Unitarity of S
|r|2+|t|2 = |r’|2+|t’|2 =1

tr’* + rt’* = 0

B* eikx D* eikx

A* e-ikx C* e-ikx

Time Reversal Invariance 

A eikx C eikx

B e-ikx D e-ikx

If this is a solution So is this

Reflection (Parity) Invariance 

S*S =1 r = r’

r=r’ , t = t’



Transfer Matrix Easy to calculate

The scattered state (1D)

S Matrix

Calculation for a repulsive square well

-a a

V

x

V0

Parity + TR invariance ——> S11 = S22

Follow any Std. QM Book

 (Schiff, Merzbacher etc.)

A eikx C eikx

B e-ikx D e-ikx

k’ = [2m(E-V0)]1/2 k = [2mE]1/2 ε = i (k2+k’2)/2kk’ η = -i (k2 - k’2)/2kk’



The scattered state (3D)

Assume: incident particles have momentum k along z direction

i.e. energy of particles is E=k2/2m

By definition of the propagator φ is the incident state.

Now, the S matrix connects the incoming and the outgoing states 

Using

Now in 3D
k =

p
2mE

magnitude of momentum



~r

Now, incident state

The scattered state (3D)

For geometry of scattering

For elastic scattering

So

and

So, far from the

 interaction region



T Matrix and cross section (3D)
Incident

 wave

Outgoing 

spherical wavefront

Scattering 
amplitude

Differential Cross 
Section

S Matrix  ——> T Matrix ——> 

Cross Section (Measureable Quantity)



Unitarity of S and Optical Theorem
θ

Im[f(✓ = 0)] =
p�

tot

4⇡
Statement of Optical Theorem

Imaginary part of fwd scattering amplitude, which measures how many particles are lost in 
this dirn., is equal to total number of scattered particles. This is just a restatement of 
probability conservation.

Unitarity of S

Take expectation in p states

Use

Note: Prob Conservation ——> σtot should include both elastic and inelastic cross section



Singular Potentials and T matrix

The FT of V does not exist,

 impossible to work with 

Vkk0 = hk0|V |ki = hk0|V |�ki

The system responds to the presence of the infinite potential by avoiding the region 
where the potential is infinite. 


The T matrix incorporates this information and is non-singular.


The defining Equation:   VG= TG0

V (r) = 1
= 0

0 < r < a
r > a

ra

V(r)

Hard Sphere Model:

So Tkk’ is well defined

The wfn in presence of the potential vanishes at r=a and is finite for r>a.

Tkk0 = hk0|V | (+)
k i Actual Solution in presence of potential



Born Approximation
Start with the T matrix:

T = V + V G0V + V G0V G0V + ....
Born.  Approx/

1st Born Approx.

2nd Born Approx.

3rd Born Approx.

Scattering  Amplitude:
p

p’

θ
q = |~p0 � ~p| = 2p sin

✓

2

f(~p, ~p0) = f(✓) = �4⇡2mT~p0,~p = �4⇡2mV~p0,~p =
2m

q

Z 1

0
drrV (r) sin qr

• Scattering Ampl. depends only on q


• Scattering Amplitude is real 


• dσ/dΩ indep. of sign of  V


Validity: |VG0V| << |V| • Weak potentials


• High Energy of Incident particles 


 ( Time spent in interaction region

 is small, single scattering dominates)


Violation of Unitarity:  fpp’ is real: what happens to optical theorem ?

Need 2nd Born Approx on RHS to restore optical theorem

LHS ~ V2



Partial Wave Analysis
Rotationally Invariant Potentials: Want to expand in angular momentum states 

Simultaneous eigenkets of H0, L2 and Lz                    with|E, l,mi hE0, l0,m0|E, l,mi = �(E � E0)�ll0�mm0

Scattering Amplitude:
f(~p, ~p0) = �4⇡2mh~p0|T |~pi = �4⇡2m

Z
dE

X

lm

h~p0|E, l,miTlhE, l,m|~pi

Using

hE, l,m|~pi = 1
p
mp

Y m⇤
l (p̂)�(E � p2/2m) f(~p, ~p0) = �4⇡2

p

X

lm

Tl(E) Y m
l (p̂0)Y m⇤

l (p̂)

Use Wigner Eckart Theorem: hE, l0,m0|T |E, l,mi = Tl�ll0�mm0

Decouples in different l channels, independent of m

The initial dirn. can be taken along z axis (θ=0, φ=0) and the final dirn. along (θ, φ=0)

f(~p, ~p0) = �4⇡2

p

X

lm

Tl(E) Y m
l (p̂0)Y m⇤

l (p̂)

Y m
l (✓, 0) =

r
2l + 1

4⇡
Pl(cos ✓)�m0

f(~p, ~p0) = �⇡

p

1X

l=0

(2l + 1)Tl(E)Pl(cos ✓)
θ



Partial Wave Analysis 
Define Partial Scattering Amplitude fl(p) ⌘ �⇡Tl(E = p2/2m)

p

f(~p, ~p0) =
1X

l=0

(2l + 1)fl(p)Pl(cos ✓)

Scattered Wavefunction:  (+)(~r) =
1

(2⇡)3/2


ei~p·~r +

eipr

r
f(~p0, ~p)

�

ei~p·~r = eipr cos ✓
=

X

l

il(2l + 1)jl(pr)Pl(cos ✓)
Spherical Bessel Functions, consist of 

both outgoing and incoming waves.

Solution of Radial Schrodinger Eqn. 


for free particles in 3D

jl(pr) !
ei(pr�l⇡/2) � e�i(pr�l⇡/2)

2iprpr � 1

 (+)
(~r) =

1

(2⇡)3/2

"
X
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(2l + 1)Pl(cos ✓)

✓
eipr � e�i(pr�l⇡)

2ipr
+ fl(p)

eipr

r

◆#
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X
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Pl(cos ✓)

2ip

✓
[1 + 2ipfl(p)]

eipr

r
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r

◆ Scatterer changes co-efficient 

of outgoing wave.


Incoming wave is unaffected



Partial Wave Analysis: S and T Matrices 

Sl(p) = 1 + 2ipfl(p)

S matrix is the overlap of the incoming free-particle state and the outgoing scattered state

=

1

(2⇡)3/2

X
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(2l + 1)

Pl(cos ✓)

2ip

✓
[1 + 2ipfl(p)]
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◆
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• Probability conservation ---> Incoming flux = Outgoing flux


• Spherical Symmetry ---> L conservation ---> For every l channel, flux in = flux out

Unitarity of Sl : phase shift in l channel

The phase shifts encode all the information about the scattering potential.

|Sl(p)| = 1 ) Sl(p) = e2i�l(p)

Partial Scattering 
Amplitude:

fl(p) =
Sl(p)� 1

2ip
=

e2i�l(p) � 1

2ip
=

ei�l(p) sin �l(p)

p
=

1

p cot �l(p)� ip

Tl(p) = �ei�l(p) sin �l(p)

⇡
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1

cot �l(p)� i
T Matrix: 

Scattering 
Amplitude: f(✓) =

X

l

(2l + 1)Pl(cos ✓)
ei�l(p) sin �l(p)

p

Interference of different

l channels



Partial Wave Analysis: Cross Section 

� =

Z 2⇡

0
d�

Z 1

�1
d(cos ✓)|f(✓)|2

Total Cross Section:

=

2⇡

p2

X

ll0

(2l + 1)(2l0 + 1) sin �l(p) sin �l0(p)e
i[�l(p)��l0 (p)]

Z 1

�1
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p2

X

l

(2l + 1) sin2 �l(p)
Interference washed out

 in angular integration

Quick Check of Optical Theorem:

=
p

4⇡
�Im[f(✓ = 0)] =

X

l

(2l + 1)Im[ei�l(p)] sin �l(p)

p
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Partial Wave Analysis: Cross Section 
d�

d⌦
= |f(✓)|2 =

X

ll0

(2l + 1)(2l0 + 1)

p2
Pl(cos ✓)Pl0(cos ✓) sin �l(p) sin �l0(p)e

i[�l(p)��l0 (p)]

Note that different l channels contribute additively to scattering amplitude. The differential 

cross-section includes interference between different channels.

partial-wave phase shifts for the l ! 0 and 2 channels
with total projection quantum number mF ! 4 when two
jF ! 2; mF ! 2i atoms collide in a total magnetic field of
0.22 mT, the bias field of this experiment (there is negli-
gible difference at zero field). Using Eq. (1) these phase
shifts give the s-wave, d-wave, and total cross sections
shown in Fig. 3(b). In Fig. 3(c) we present the fraction of
scattered atoms Nsc=Ntot versus the collision energy as
measured in our experiments. Since Nsc=Ntot is on the
order of 40% close to the resonance (i.e., large depletion),
the number of scattered particles is not proportional to the
total elastic cross section !"T#. As a result, the observed
d-wave resonance peak is not very pronounced even
though the total cross section grows by a factor of $4
with respect to the zero energy limit. However, when the
effect of depletion is included [21] we obtain good agree-
ment between the experimental and theoretical scattering
fractions [Fig. 3(c)]. The model predicts the d-wave reso-
nance to occur at 275 "K, and the measurements are
consistent with this to within 25 "K.

As is obvious from Fig. 2, the scattered particles are
emitted in spatial patterns which depend on the collision
energy. It is possible to relate these patterns to the differ-
ential cross section when the effects on the particle dis-
tribution of the harmonic potential and the projection
onto the imaging plane are accounted for. As a result of

the scattered particles expanding in an anisotropic har-
monic potential, the projected halos seen in Fig. 2 have
elliptical envelopes rather than the circle expected for a
free-space Newton sphere as shown in Fig. 1. However,
due to the cylindrical symmetry about the collision axis
(which is perpendicular to the optical axis of our imaging
system), full 3D tomographical information on the scat-
tering can be extracted from the 2D absorption images
via the inverse Abel transform [17,22]. Applying Abel
inversion to the absorption images gives us the angular
particle distribution in the trap at the time of image
acquisition, to which the distribution at the time of colli-
sion (the free-space distribution) is related in a straight-
forward manner [23].

In Fig. 4(a) we show polar plots of the probability
density nsc"#; T# / d!=d! for a scattered particle to be
emitted at the polar angle # as determined from the
absorption images in Fig. 2. The angular distributions
for different temperatures have been normalized with
respect to each other such that

R
nsc"#; T#d! ! 1 for all

T and were determined from the Abel inverted images by
counting the particles within angular bins at a unit sphere
transformed to the quarter period ellipsoid via the rela-
tion in Ref. [23]. For comparison we present in Fig. 4(b)
the temperature development of the normalized differen-
tial cross section as predicted by Eq. (1) using the partial-
wave shifts from the previously described model. The
scattering patterns of Figs. 4(a) and 4(b) show the same
behavior and the minor discrepancies between the experi-
mental and theoretical distributions may be attributed to

FIG. 3. Dependence on collision energy. (a) The s (dotted
line) and d (dashed line) partial-wave phase shifts from the
theoretical model. (b) The s-wave (dotted line), d-wave
(dashed line), and total (solid line) cross sections calculated
from the model partial-wave phase shifts. (c) The measured
scattered fraction of atoms Nsc=Ntot (filled circles). The black
curve shows the fraction as given by the model cross section
when depletion of the colliding atom clouds is accounted for.

FIG. 2 (color online). Absorption images acquired at a quar-
ter of a radial trap period after the collision of two doubly spin-
polarized Rb clouds (visible as dark ellipses) for various
collision energies. The halos of scattered particles have ellip-
tical envelopes since they are evolving in an anisotropic har-
monic trap which is weakest in the horizontal direction
(z direction). At the selected time of acquisition the scattering
halos have the maximum radial excursion in the trap.
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broadening effects from the finite sizes of the colliding
clouds and a small departure from an ideal scattering
geometry, both of which are not included in our analysis
method [24]. For low temperatures the scattering is
s-wave dominated and isotropic. However, at the onset
of the d-wave scattering resonance the s and d partial-
wave amplitudes interfere constructively in the radial
direction and destructively in the axial direction. Above
the d-wave resonance the scattering pattern is d-wave
dominated, but nonvanishing s-wave scattering gives
rise to destructive interference in the radial direction
and constructive interference in the axial direction.

In conclusion, we have reported direct imaging of the
scattered atoms in cold collisions of doubly spin-
polarized 87Rb. The emission patterns and the measured
number of scattered atoms as a function of collision
energy are described well by a theoretical model. The
present experiment demonstrates, in particular, the quan-
tum mechanical nature of the scattering of atoms. The
underlying quantum mechanics reveals itself strikingly
through the appearance of one of its most prominent
features—interference —and as only two states are in-
volved in the scattering, the interpretation becomes par-
ticularly simple. On a more subtle level the extended
version of Pauli’s exclusion principle gives rise to the
absence of odd partial waves since the scattering particles
are identical bosons. Finally, we note the possibility of
extending our method to other important low-lying reso-
nances, atoms in different spin states, and to heteronu-
clear collisions.

This work was supported by the Marsden Fund of New
Zealand, Contract No. 02UOO080. N. K. acknowledges
additional support from the Danish National Science
Research Council. We thank V. Dribinski for providing
us with a software implementation of the Abel inversion
method of Ref. [22].
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FIG. 4. Polar plots of the normalized angular scattering
probability density for different collision energies in #K.
(a) Experimental results from the absorption images of Fig. 2
after Abel inversion and a transformation from trap to free
space. (b) Characteristic patterns as predicted by Eq. (1) using
the partial-wave shifts from our theoretical model.
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Legendre polynomial of order l and !l are the partial-
wave phase shifts. The lth term in the expansion repre-
sents particles having orbital angular momentum l !h and
the sum only runs over even l, since odd partial waves are
forbidden by the requirement of a totally symmetric wave
function for identical bosonic particles. In the present
case, where only l ! f0; 2g terms (s and d waves) con-
tribute [16], the scattering amplitude is

f""# ! $"e2i!0 % 1#
|!!!!!!{z!!!!!!}

s

& 5"e2i!2 % 1#"3cos2"% 1#=2
|!!!!!!!!!!!!!!!!!!!!!!!{z!!!!!!!!!!!!!!!!!!!!!!!}

d

'=ik;

(1)

and the differential cross section d#=d" ! jf""#j2 has
an angular pattern which depends crucially on the quan-
tum mechanical interference between the partial-wave
states as dictated by the phase shifts. Assuming the
collisions to occur in free space, scattered particles ob-
served in the center of mass frame will be distributed
over a ballistically expanding sphere (the so-called
Newton sphere) according to the differential cross sec-
tion. If the scattered particles are detected using absorp-
tion imaging, the distribution on this sphere will be
projected onto a plane by the Abel transformation [17].
Figure 1 illustrates this in the case of pure d-wave scat-
tering and imaging along a direction perpendicular to the
collision axis.

In our experiment, 87Rb atoms collected in a MOT
were optically pumped into the jF ! 2; mF ! 2i hyper-
fine substate and loaded into a Ioffe-Pritchard magnetic
trap in the quadrupole-Ioffe configuration [18]. The trap-
ping potential is cylindrically symmetric and harmonic,
characterized by radial and axial oscillation frequencies
of!r=2$ ! 275 and!z=2$ ! 16 Hz, respectively. After
rf evaporative cooling to a temperature of 12 %K, the trap
was adiabatically transformed to a double-well configu-

ration [19], splitting the atomic cloud in half along its
long dimension (z) by raising a potential barrier. The
z axis is horizontal so that the influence from gravity is
unimportant. An additional rotating bias field of 0.5 mT is
applied just before forming the double well to avoid
Majorana spin-flip atom loss at the two trap minima,
where the magnetic field would otherwise become zero.
When fully separated the two clouds were 4.3 mm apart
and the trap frequencies were !r=2$ ! 60 Hz and
!z=2$ ! 14 Hz near the well minima. Further evapora-
tive cooling lowered the temperature to 225 nK in each
well (as compared to the BEC transition temperature of
100 nK), and the total number of remaining atoms was
4( 105. There is a slight difference between the proper-
ties of the two clouds due to a small residual tilt in the
potential. Subsequently the separation of the clouds was
adiabatically adjusted to select the potential energy
gained when the trap is rapidly converted back to a single
well. To increase the cloud densities the rotating bias field
was reduced to 0.2 mT. The collision is initiated by
rapidly ramping from a double- to a single-well configu-
ration, accelerating the clouds towards the potential mini-
mum positioned between them. The trapping configurat-
ion for the collision has frequencies !r=2$ ! 155 Hz
and !z=2$ ! 12 Hz and remains unchanged until the
end of the experiment. After the collision we waited for
one-quarter of the radial trap period, so that atoms were
at maximum radial extension, before acquiring an ab-
sorption image using a 40 %s pulse of resonant light and a
charge coupled device camera. The 3D distribution of
scattered atoms is projected onto a plane giving the
column density distribution. We obtained the collision
energy and the corresponding uncertainty from a fit to
cloud positions measured before and after the collision.
The collision energy, expressed in temperature units, is
T ! %v2=2kB, where % is the reduced mass of the par-
ticles and v is the relative velocity of the two clouds.

Figure 2 shows absorption images of scattering ac-
quired at collision energies in the range from 87 to
348 %K. Scattering halos of particles with an elliptical
envelope are clearly visible as are the outgoing clouds of
unscattered atoms. The major and minor semiaxes of the
former, and the distance between the latter, increase
linearly with

""""

T
p

due to the fixed time of acquisition after
collision. The total number of scattered particles Nsc was
determined by integrating the column density over the
image frame and using a suitable interpolation to bridge
the areas hidden by the outgoing clouds of unscattered
atoms.

The observed scattering yield is interpreted in terms
of a coupled-channels theoretical model that includes
the ground state singlet and triplet potentials and all
spin-dependent interactions. The triplet potential has a
van der Waals C6 constant of 4707 a.u. (1 a:u: ! 9:5734(
10%26 J nm6) and a scattering length of 98.96 a.u.
(1 a:u: ! 0:052 918 nm) [20]. Figure 3(a) presents the

FIG. 1 (color online). Illustration of the process of using
absorption imaging for the detection of scattered particles.
We present the case of pure d-wave scattering occurring at
the origin for particles coming in along the z axis. Scattered
particles will be situated on an expanding sphere and distrib-
uted according to the d-wave angular emission pattern jf""#j2.
Absorption imaging along the x axis projects this distribution
onto the yz plane.
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Interference of s and d partial scattering amplitudes in a collision of 2 Rb87 atom clouds. 
Scattered atoms are in the halos. [ From : N. Thomas et. al, PRL 93, 173201 (2004) ]


