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Recap of Previous Classes
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Recap of Previous Classes
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Recap of Previous Classes
Born Approximation T = V + V G0V + V G0V G0V + ....

Born.  Approx/

1st Born Approx.

2nd Born Approx.

3rd Born Approx.Validity: • Weak potentials


• High Energy of Incident particles 
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As λ ---> 0, with V0/λ  fixed, the Yukawa 
potential goes over to the Coulomb potential.
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Recap of Previous Classes
Expansion in Partial waves
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Scattered Wavefunction:

incoming spherical waveoutgoing spherical wave

Sl(p) = 1 + 2ipfl(p)S Matrix : |Sl(p)| = 1 ) Sl(p) = e2i�l(p)

phase shift in l channel

Conservation of Angular Momentum ——> Unitarity of Sl 



Recap of Previous Classes
Expansion in Partial waves
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Low Energy Scattering and few Partial Waves
Use the expansion of a plane wave into spherical waves in 3D

Use orthonormality of Ylm

Y m
l (✓, 0) =

r
2l + 1

4⇡
Pl(cos ✓)�m0Use the fact that k is along z and

Use for x << 1 to show for small k, k’

How small should k be? Range of r integral is R0, the range of potential. So, 
kR0 << 1 for this to be valid



Low Energy Scattering and few Partial Waves
Let us use the self-consistent eqn. for T matrix

Note that we want k, k’ to be small, but q sum is unrestricted

However, we have

So, Expand the series to show that each term 
has the form Vkq …… Vpk’ 

and

Now use the fact that for elastic scattering k=k’ and Tl(E)/k ~  Tkk’(E)

For low E << 1/(2m R02)

Low E scattering is dominated by a few partial waves 

OK to consider only l=0 channel for E —> 0, s-wave scattering



Calculating Phase Shifts in simple potentials
The straight forward approach (works only in few selective cases) is to solve the 
Schrodinger equation with the potential, and obtain the phase shift from the asymptotic 
form of the wave-function far from the origin by comparing it with
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V (r) = V0 0 < r < a
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•Scattering states behave like free particle far from the 
potential region.


•Since they have KE, we are looking for states with E>0


•The potential well can sustain bound states, but we are not 
interested in them (for now).



Use spherical co-ord 

 angular part given by  Y0l

Spherically Symmetric Potential Well/Barrier:
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Spherical Bessel Functions

Free particle solutions far from origin

Spherical Hankel Functions
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Spherically Symmetric Potential Well/Barrier:

Spherical Bessel Functions Spherical Hankel Functions

Rl(r) = c1jl(pr) + c2nl(pr) = c(1)h(1)
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c(1) and c(2) are obtained from the continuity of the logarithmic derivative at r=a.
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Note that till now we have not used the specific square-wave form 

of the potential. This result is valid for any potential that vanishes at

a finite range



Spherically Symmetric Potential Well/Barrier:
To find the parameter βl, we need the solution inside  the potential region

A)  Hard Sphere Potential
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Negative phase shift for 

repulsive  potential


Generically true for finite 

potential barrier as well.
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Spherically Symmetric Potential Well/Barrier:
To find the parameter βl, we need the solution inside  the potential region

B)  Potential Well/ Barrier
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Square Potential Well: s-wave Scattering
Consider the l=0 channel in the low energy limit tan �l(p) ⇠ �pas

s-wave scattering 
length

For square well j0(x) =
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s-wave Scattering Length
For large r u0(r) ⇠ ei�0 sin(pr + �0) ⇠ ei�0 sin p(r � as) ⇠ ei�0p(r � as)

So as has the interpretation of the first point in space where the extrapolation of the far 
solution hits zero. Note that it is not a zero of the actual solution.
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For purely repulsive potential

 curvature is away from axis.


Scattering Length is always positive 
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s-wave Scattering Length
For large r u0(r) ⇠ ei�0 sin(pr + �0) ⇠ ei�0 sin p(r � as) ⇠ ei�0p(r � as)

So as has the interpretation of the first point in space where the extrapolation of the 
far solution hits zero. Note that it is not a zero of the actual solution.

a a
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0
0

0

(b) (c)(a)

For attractive potential wells, the scattering length is initially negative


As we increase the well depth,the scattering length becomes more 

and more negative till it reaches -∞ 


Beyond this point, the scattering length starts at + ∞ and keeps decreasing


This is the point where we have the first bound state in the system

V(r) V(r) V(r)



Effective Range Expansion H. A. Bethe, Phys. Rev.  76, 38 (1949)
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Schrodinger Eqn for 2 different momenta

Consider the asymptotic form of the solutions at large r

 p(r) =
sin[pr + �0(p)]

sin �0(p)

 2
d 1

dr
�  1

d 2

dr

����
R

0

= (p21 � p22)

Z R

0
dr 1 2
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Subtract the equations for u and ψ, 

p1 ! 0, p2 ! p p cot �0(p) = � 1

as
� p2

Z 1

0
dr 0 p � u0up

 Effective range of potential 
r0

p cot �0(p) =
�1

as
� r0p

2
f0(p) =

�1
1
as

+ ip+ r0p2
 Effective range expansion

Effective Range Expansion H. A. Bethe, Phys. Rev.  76, 38 (1949)
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At r=R, LHS vanishes by continuity eqn.s.  

At r=0, terms in LHS involving u vanish as u(0)=0.
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Universality of low energy scattering
We have seen that the low energy scattering from a potential can be characterized

by a few parameters 

E.g. s-wave scattering can be parametrized by as, r0, etc.

Clearly this cannot depend on all the details of the shape of the potential

So we can have many different potentials at the microscopic level, whose low energy 

scattering (say as, r0) are same. 


E.g. can choose different V0 and a for a square well so that qa is fixed. Low energy

scattering is same for both. We can even get away with a simpler potential (say delta fn) 
provided we manage to get the correct scattering length

This is your first glimpse into the general phenomenon of universality: 


Many systems which look different on a microscopic scale (i.e. different V) can show 

same phenomena at low energy. This is at the heart of theoretical endeavours to 

calculate properties of complicated systems.


For square well �0 = qa cot(qa)� 1
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