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Scattering of Identical Particles
We need to revisit the 2-particle problem of scattering, when the particles are identical.

θ

π - θ

Scattering of particles in COM frame: particles scattered at angle θ and 𝜋 -θ 

A B



Scattering of Identical Particles
We need to revisit the 2-particle problem of scattering, when the particles are identical.

θ

•The two outcomes are indistinguishable. 


•Previously we only looked at A and not at B


•For identical particles we should add the prob. amplitudes for A and B with appropriate phases

π - θ

For Bosons: For Fermions:f(✓) + f(⇡ � ✓) f(✓)� f(⇡ � ✓)

s-wave scattering differential cross section for identical fermions vanish (at any angle)

Scattering of particles in COM frame: particles scattered at angle θ and 𝜋 -θ 

A B



Cold Atom Systems Bosons            Fermions
Rb87, Li7, Na23 K40, Li6Alkali atoms cooled to ~ 10 nK 

Laser cooling of atoms

Opposite lasers tuned below atomic transition frequency

Atoms moving toward the light comes into resonance due to Doppler shift

Atoms absorb photon momentum and is slowed down. 

Emission in random directions : avg momentum change is 0

T ~ 10 - 100 μK



Cold Atom Systems
Alkali atoms cooled to ~ 10 nK 

Atoms are trapped using electric/magnetic fields

Further evaporative cooling by opening  up 
the trap

Quantum degenerate gases

 with 105 - 107 atoms

Image courtesy:  Le Blanc Group, 

 Univ. of Alberta

Bosons            Fermions
Rb87, Li7, Na23 K40, Li6

Need scattering/ collision between atoms 

to transfer energy during evap. cooling

Low energy scattering dominated by s-wave 

scattering

Cannot cool spinless Fermions in this way

Fermions are actually cooled by mixing 
them with Bosonic species F-B s-wave 

scattering cross section is not 0



Multi-channel scattering

We will now generalize to the case where the incident particle is in some internal state 

|α > while the scattered outgoing particle is in an internal state |α’ >. The scatterer will be 
taken to be in some initial state |β> while the scattering leaves it in the state |β’>. 


E.g.: spin-flip scattering where the spin of the incident particle is flipped in the scattering 
process. 

The quantum states are now specified by relative momentum and the internal qnt. no.s α 
and β. Note: need dynamics of scatterer to make this work.

So far, we have not considered internal quantum numbers (like spin) for particles which 
were involved in scattering.

Hint|↵,�i = (✏↵ + ✏�)|↵�iH =
p2↵�
2m

+ V (r) +Hint
Hamiltonian:

Incident State: Scattered State:ei~p·~r|↵�i ei~p·~r|↵�i+ f↵0�0

↵� (~p, ~p0)
eip

0r

r
|↵0�0i

T matrix and scattering amplitude is now a matrix in the space of internal states



Multi-channel scattering: Energetics

The kinetic energy is not conserved if the energy in the incoming and outgoing 
internal dof is not the same.

Inelastic Scattering p02

2m
+ ✏↵0 + ✏�0 =

p2

2m
+ ✏↵ + ✏� p0 6= p

Total energy (kinetic+ internal d.o.f.) needs to be conserved in the scattering.

Total energy conservation 
p02

2m
=

p2

2m
+ ✏↵ + ✏� � ✏↵0 � ✏�0

Does not make sense if 
p2

2m
+ ✏↵ + ✏� � ✏↵0 � ✏�0 < 0

Consider particles incident with a fixed internal state. For inelastic scattering to a 
particular internal state, the kinetic energy of the particles should cross a threshold 

Eth = ✏↵0 + ✏�0 � ✏↵ � ✏� Note that if Eth <0, the scattering will always occur.

For a given incident internal state and a given incident energy, we can categorize the 
internal states of the scattered state as either closed, when the  energy is below the 
threshold and open when the energy is above the threshold.



Inelastic Scattering : Energetics and kinematics

Differential Cross Section:

d�

d⌦
d⌦ =

No. of particles scattered into the solid angle     around              per unit timed⌦ k̂0 = (✓,�)

Number of incident particles crossing unit area normal to z dirn. per unit time

For inelastic scattering

 k ≠k’, so v≠ v’. 

Current in incoming channel

Current in outgoing channel

Rate at which 2 particles in volume V in | αβ > are scattered to |α’β’> is K/V

DOS of outgoing states
Born Approx: Replace T by V ——> Fermi Golden Rule



Examples of inelastic scattering
electron + atom (ground state) -->  electron + atom (excited state)  

electron + ion-lattice -->  electron + phonons 

neutron + ion-lattice -->  neutron + phonons 

  (Only the target has internal states)

electrons scattering off magnetic impurities (both electron and impurity has spin states)

nuclear scattering where hyperfine states are changed in the process.

atom-atom scattering where both atoms have internal (electronic, spin, hyperfine) states

Inelastic Neutron Scattering

Inelastic X-Ray scattering

Stopping of charged particles (like alpha particles) as they pass through a material

Neutrino Oscillations



Inelastic Scattering and Target DOS
Consider Inelastic Neutron Scattering off an insulating magnet

Neutrons interact with electronic spins through

We have assumed that while the system is insulating, i.e. charge motion is frozen

Spins can fluctuate in space and time (about a possible ordered state)

Use full time dependent formalism 

Shortened notation: α, β shorthand for states of both neutron and target 

Will use Born Approximation

Will think of incoming polarized neutrons with Iz =+, 

Look for inelastic scattering in the outgoing channel Iz=- 

Relevant potential : 



Insulating Magnets and Dynamic Structure Factor
Will use Born ApproximationRelevant potential : 

F.T. of 

Dynamic Structure Factor

Info about Spin Dynamics

mom-conservation energy-conservation



Insulating Magnets and Dynamic Structure Factor
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three higher-order spin couplings (J 0, J 00, and Jc! have
similar effects on the dispersion relation and intensity
dependence; therefore they cannot be determined inde-
pendently from the data without additional constraints.
We first assume that only J and J 0 are significant as in
[18], i.e., J 00 ! Jc ! 0. The solid lines in Fig. 2 are fits
to a one-magnon cross section, and Fig. 3 shows fits to
the extracted dispersion relation and spin-wave intensity.
As can be seen in the figures, the model provides an
excellent description of both the spin-wave energies and
intensities. The extracted nearest-neighbor exchange
J ! 111.8 6 4 meV is antiferromagnetic, while the
next-nearest-neighbor exchange J 0 ! 211.4 6 3 meV
across the diagonal is ferromagnetic. A wave-vector-
independent quantum renormalization factor [12] Zc !
1.18 was used in converting spin-wave energies into ex-
change couplings. The zone-boundary dispersion becomes
more pronounced upon cooling as shown in Fig. 3A, and
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FIG. 3. (A) Dispersion relation along high symmetry direc-
tions in the 2D Brillouin zone, see inset (C), at T ! 10 K (open
symbols) and 295 K (solid symbols). Squares were obtained
for Ei ! 250 meV, circles for Ei ! 600 meV, and triangles
for Ei ! 750 meV. Points extracted from constant-E(-Q) cuts
have a vertical (horizontal) bar to indicate the E(Q) integration
band. Solid (dashed) line is a fit to the spin-wave dispersion re-
lation at T ! 10 K (295 K) as discussed in the text. (B) Wave-
vector dependence of the spin-wave intensity at T ! 295 K
compared with predictions of linear spin-wave theory shown by
the solid line. The absolute intensities [11] yield a wave-vector-
independent intensity-lowering renormalization factor of 0.51 6
0.13 in agreement with the theoretical prediction of 0.61 [12]
that includes the effects of quantum fluctuations.

the dispersion at T ! 10 K can be described by the
couplings J ! 104.1 6 4 meV and J 0 ! 218 6 3 meV.

A ferromagnetic J 0 contradicts theoretical predictions
[19], which give an antiferromagnetic superexchange J 0.
Wave-vector-dependent quantum corrections [20] to the
spin-wave energies can also lead to a dispersion along the
zone boundary even if J 0 ! 0, but with sign opposite to our
result. Another problem with a ferromagnetic J 0 comes
from measurements on Sr2Cu3O4Cl2 [21]. This material
contains a similar exchange path between Cu21 ions to
that corresponding to J 0 in La2CuO4 and analysis of the
measured spin-wave dispersion leads to an antiferromag-
netic exchange coupling for this path [21].

While we cannot definitively rule out a ferromagnetic
J 0, we can obtain a natural description of the data in terms
of a one-band Hubbard model [22], an expansion of which
yields the spin Hamiltonian in Eq. (1) where the higher-
order exchange terms arise from the coherent motion of
electrons beyond nearest-neighbor sites [13–15]. The
Hubbard Hamiltonian has been widely used as a starting
point for theories of the cuprates and is given by

H ! 2t
X

"i,j#,s!",#
$cy

iscjs 1 H.c.! 1 U
X

i
ni"ni# , (2)

where "i, j# stands for pairs of nearest neighbors counted
once. Equation (2) has two contributions: the first is
the kinetic term characterized by a hopping energy t
between nearest-neighbor Cu sites and the second the
potential energy term with U being the penalty for
double occupancy on a given site. At half filling, the
case for La2CuO4, there is one electron per site and for
t%U ! 0, charge fluctuations are entirely suppressed
in the ground state. The remaining degrees of freedom
are the spins of the electrons localized at each site. For
small but nonzero t%U, the spins interact via a series of
exchange terms, as in Eq. (1), due to coherent electron
motion touching progressively larger numbers of sites.
If the perturbation series is expanded to order t4 (i.e.,
4 hops), one regains the Hamiltonian (1) with the ex-
change constants J ! 4t2%U 2 24t4%U3, Jc ! 80t4%U3,
and J 0 ! J 00 ! 4t4%U3 [13–15]. We again fitted the
dispersion and intensities of the spin-wave excitations
using these expressions for the exchange constants and
linear spin-wave theory. The fits are indistinguishable
from those for variables J and J 0. Again assuming
[23] Zc ! 1.18, we obtained t ! 0.33 6 0.02 eV and
U ! 2.9 6 0.4 eV (T ! 295 K), in agreement with t
and U determined from photoemission [24] and optical
spectroscopy [25]. The corresponding exchange val-
ues are J ! 138.3 6 4 meV, Jc ! 38 6 8 meV, and
J 0 ! J 00 ! Jc%20 ! 2 6 0.5 meV (the parameters at
T ! 10 K are t ! 0.30 6 0.02 eV, U ! 2.2 6 0.4 eV,
J ! 146.3 6 4 meV, and Jc ! 61 6 8 meV). Us-
ing these values, the higher-order interactions amount
to &11% (T ! 295 K) of the total magnetic energy
2$J 2 Jc%4 2 J 0 2 J 00! required to reverse one spin on a
fully aligned Néel phase.
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Spin Wave Excitations captured by

 inelastic Neutron Scattering

R. Coldea et. al 
PRL 86, 5377 (2001)  

M P M Dean et. al
Nature Mat. 11, 850 (2012)



Elastic Part in Multichannel Scattering
Consider a multichannel scattering problem with 1 open channel

Only Elastic Scattering is possible

However scattering in the open channel

can be drastically changed by presence of 

closed channel

matrix eqn. incl.

 internal states

diag. in 

channels off diag. coupling



Elastic Part in Multichannel Scattering

diag. in channels

off diag. coupling

Use

with

T matrix in absence 
of off diagonal V2 

Take low energy limit

For expectation in the 
same channel, go to 
2nd order in V2



Elastic Part in Multichannel Scattering

Feshbach Resonance in K40

C. Regal and D. S. Jin,
PRL 90, 230404 (2003)


