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Basic Structure of QM
• An isolated quantum system at time t: |ψ(t)>, a normalized vector in an abstract Hilbert 


     space over complex no.s.

• Any observable (measurable quantity): a linear Hermitian operator in this Hilbert space. 


With a choice of basis they can be rep. by matrices.

• A special operator, the Hamiltonian, generates the time evolution of the state through the

             Schrodinger eqn.

• The result of measurement of an observable cannot be predicted, but the possible values 
of the outcome and the probability of obtaining these values can be predicted if the state 
of the system is known.

The possible values of an observable are the eigenvalues of the corresponding operator and 
if an eigenvalue is obtained in a measurement, the state of the system right after the 
measurement is the corresponding eigenvector of the operator. The probability of obtaining 
this eigenvalue is



QM in practice
The Hamiltonian generates the dynamics ——> eigenstates of the Hamiltonian play imp. role in 
solving QM problems.

A lot of effort is thus spent in finding and cataloguing the properties of Hamiltonian eigenstates

Expand the state in this basis

which gives

E.g.: If we know the matrix elements of an observable A between energy eigenstates, then the 
expectation of the observable is given by

Position basis and particle in external potential Wave-function

Schrodinger Wave Equation



QM in Real Systems
To solve a QM problem, we need 2 things: (a) Co-ordinates/Hilbert Space

                                                   (b) The Hamiltonian of the system

• A double quantum well can also be described by a 2 state system (if we only care 

  about which well the electron is in and not about where it is in each well)

(a) The Hilbert Space depends both on the system and the things we are interested in

• For thermal properties of a gas of atoms at low temp. -- neglect internal degrees of an 

   atom and work with spatial co-ordinates of c.o.m. (i.e. free particles)

E.g.: A system of atoms can be described in different ways  

• For light absorption by atoms, -- neglect motion of atoms and work with the internal

  states (for H atom work with relative co-ord between e and p).

• For cooling the atoms by shining light on them, i.e. Laser Cooling, we need to worry about  
both the c.o.m. motion and the internal states of the atom.

• A spin 1/2 particle in a magnetic field can be described by a 2-state system.

E.g.: Seemingly different systems can be described by similar Hilbert space



QM in Real Systems
(b) In most interesting cases, we do not know the exact Hamiltonian of the system 

Elementary particles: The Standard model seems to describe them well, but

                            people are looking for signatures of beyond Std. Model terms. 

Nuclear Physics: Lot of effort spent in getting parameters of nuclear interaction 

                     from scattering data.

Atomic Physics: It is usually impossible to know exact form of 

                    atom-atom interactions. 

Condensed Matter Physics: It is impossible to work with all the details for 1023 particles. One 

                                  uses simpler models to make the problem tractable. 

V(r)
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How do we choose models? Are there guiding principles?

If we are interested in low-energy phenomena, some details of the original microscopic 
Hamiltonian are irrelevant. The formal way of finding out the relevant stuff is called RG, which 

we will not learn in this course.

The second guiding principle is the concept of symmetries, which we will learn in some detail.



Shapes and Symmetry

(a) (b) (c)
(d)

(a) is more symmetric than (b), (c) which is more symmetric than (d)


(b) and (c) have the same symmetry

How do we formalize this?

Core Idea of symmetry:

There is a transformation of the ingredients (co-ord in this case) 

under which the form of something (eqn. defining the shape) remains 

unchanged. Such transformations would be called symmetry 
transformations or symmetries.
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Shapes and Symmetry
• The circle looks the same under rotn. of axes, thus symmetries are about 

   indistinguishability or about non-observables. 


• Symmetries are very good at predicting if some quantity is 0. In this case,  

  the eqn is independent of θ, which suggests (r, θ) as useful co-ord.  


• Symmetries are not good for everything, e.g. area of circle etc. still needs to be 

  computed. They are useful guides which constrain the possibilities.

(a) (b) (c)
(d)

• Rotation of co-ord axes by any angle is a symmetry of (a).

• (b) is symmetric only under rotations by π/2. Thus symmetry transformations of (b) are subset

   of those of (a). In this sense (a) is more symmetric than (b).

• Convince yourself that (b) and (c) has same symmetries, i.e. rotn. of axes by π/2.

• (d) is not invariant under any of this transformations and has the least symmetry of all.



Symmetry and Physical Laws

The physical laws governing a system are usually written as a relation (eqn., diff. eqn. etc) 
between different quantities (position and time, Electric and Magnetic fields, which are 
themselves functions of position and time etc.)

An operation on the ingredients of this relation, which keeps the form of the relations invariant 

is called a symmetry transformation or a symmetry of the system.

This operation could act on position/time, giving rise to spatio-temporal symmetries.

~F = m~̈rE.g: Newton’s laws (for time indep. forces) are invariant under t --> -t

The harmonic oscillator H =
p2

2m
+

1

2
m!2q2 is invariant under q --> -q

This operation could act on internal co-ordinates giving rise to internal symmetries.

E.g: Maxwell’s equations, written in terms of 

a vector potential A, are invariant under 

~A ! ~A+r�



Symmetry and Physical Laws

This operation could be global (i.e. the same operations act on ingredients at all space-time). 

The corresponding symmetries are called global symmetries

E.g: The Heisenberg model of interacting

     spins on a lattice

H = �J
X

ij

~Si · ~Sj is invariant under all rotation of

 all spins by same angle

The physical laws governing a system are usually written as a relation (eqn., diff. eqn. etc) 
between different quantities (position and time, Electric and Magnetic fields, which are 
themselves functions of position and time etc.)

An operation on the ingredients of this relation, which keeps the form of the relations invariant 

is called a symmetry transformation or a symmetry of the system.

This operation could be local (i.e. different operations act on ingredients at different space-time). 

The corresponding symmetries are called gauge symmetries

~A ! ~A+r�
E.g: Maxwell’s equations, written in terms of 

a vector potential A, are invariant under 

This is a gauge symmetry as different things are added to A at different positions



Symmetry and Physical Laws

The physical laws governing a system are usually written as a relation (eqn., diff. eqn. etc) 
between different quantities (position and time, Electric and Magnetic fields, which are 
themselves functions of position and time etc.)

An operation on the ingredients of this relation, which keeps the form of the relations invariant 

is called a symmetry transformation or a symmetry of the system.

This operation could be discrete.The corresponding symmetries are called discrete symmetries.

~F = m~̈rE.g: Newton’s laws (for time indep. forces) are invariant under t --> -t

The harmonic oscillator H =
p2

2m
+

1

2
m!2q2 is invariant under q --> -q

These operations cannot be carried out in a smooth way.

This operation could be continuous, i.e. the transformations on either space-time or gen. co-ord

can be characterized by a set of parameters, which vary continuously. The operations are usually

differentiable wrt these parameters.

~A ! ~A+r�
E.g: Maxwell’s equations, written in terms of a vector 
potential A, are invariant under 

This is a continuous symmetry as      is characterized by its 3 components, which vary 
continuously as fn. of space-time.

r�



Symmetry and Quantum Mechanics
In QM, the eqn. of motion is obtained from the Hamiltonian

i@t| i = H| i Transformations that leave the QM Hamiltonian invariant are

 symmetries of the system.* 

• How do symmetry transformations manifest themselves in the Hilbert space?


• How does a state change under a symmetry transform?


• How does a generic QM operator change under a symmetry transform?

• Predict conserved quantities and provide quantum numbers. 


• Predict degeneracies of eigenstates.


• Break up the large Hamiltonian matrix into block-diagonal form.


• Predict that some matrix elements of operators are 0 without calculating them.


• On breaking symmetries perturbatively, predict how the degeneracies will split.

We will see that symmetries:

Rather than studying effects of individual symmetries, we will systematically study the 
relation between symmetries and QM using the language of 


groups and representation of groups.

*mostly …. see time reversal later



Basics of Group Theory
Set: A Set is a collection of objects or entities (no repetition allowed). It is often 
denoted by S={ a,b,c,…n}. Members of a set are called its elements and this is written as a 2 S

Eg:  Set of students in this class, set of integers, set of students whose name start with A, 

      {Schrodinger, Heisenberg, Bohr, Pauli}, set of all 2 X 2 matrices ..........

Group: A Group is a set G together with a binary operation   , which satisfies:�
Closure: Ga 2 G Gb 2 G Gc = Ga �Gb 2 GIf and then

(Ga �Gb) �Gc = Ga � (Gb �Gc)Associativity:

Inverse:

 For all elements, the inverse of the element is in G 

Ga �G�1
a = G�1

a �Ga = E 8Ga 2 GThe inverse of an element is defined by

Identity: Ga � E = E �Ga = Ga 8Ga 2 G There is one element of G, often denoted by E,
This element is called the identity element of the group

• The number of elements in the set, G, is called the order of the group.

Ga �Gb = Gb �Ga• If the group is called Abelian, otherwise it is called Non-Abelian



Basics of Group Theory Group:  Examples
The following are groups:

•The set {1,-1} with multiplication as combination rule  Z2


•The set {0,1} with a+b (mod 2) as combination rule


• Rotation by 0 and π around a given axis, combination rule 

  is to apply one after the other  C2


•Inversion and doing nothing, these two transformations


•Permutation of 2 objects. The set elements are the 

  specific permutations and not the objects


•The set {i,-i,1,-1} with multiplication as combination rule Z4


•The set eiθ with multiplication as combination rule U(1)


•Set of all rotations in 3D 


•Set of all symmetry operations of an equilateral triangle


•The set of all unitary N X N matrices U(N) 


•The set of all orthogonal N X N matrices O(N)


•The set of all unitary N X N matrices with unit Determinant SU(N)


•The set of all orthogonal N X N matrices with unit Determinant SO(N)


} Abelian

} Non-Abelian



Group:  ExamplesBasics of Group Theory
The following are NOT groups:

• The set of all integers forms a group with respect to addition, but not wrt multiplication.

  The inverse, wrt multiplication is a rational fraction, which is not an integer.


• The set of all integers is not a group wrt subtraction, as subtraction is not associative.


•The set of all Hermitian matrices do not form a group wrt matrix multiplication, since 

  product of Hermitian matrices is not necessarily a Hermitian matrix ( closure).


• Set of all N X N orthogonal matrices with Det=-1 (identity does not exist) 


• Set of all N X N matrices do not form a group wrt matrix multiplication (Det may be 0 

  and hence inverse will not exist for all members).


• The set of positive integers is not a group wrt addition (Identity and inverse is not part 

  of the set)



Symmetries and Groups
The set of all symmetry transformations of a Hamiltonian has the structure of a group, with 
group multiplication equivalent to applying the transformations one after the other 

Inverse: As long as an inverse transformation exists, it is a symmetry transformation, 

          i.e. it leaves the Hamiltonian invariant. Thus the inverse is part of the set G 

Let G be the set of symmetry transformations Ga which keeps the Hamiltonian invariant. 


Closure: If Ga and Gb are transformations which keep H invariant, then applying them one 

          after the other,   GaGb[H]=Ga[H]=H. So GaGb is a symmetry transformation of H

Associativity: Application of symmetry transformations are associative.

Identity: There is always a trivial transformation, where nothing is done to the original 

           co-ordinates. This is the identity element of the group.

Example: Consider a particle moving in a spherically symmetric potential. Rotation about any 
axis by any angle is a symmetry. The set of all such rotn.s form a group 

•2 rotations result in another rotation --- Closure

•Rotations are associative

•No rotation is the identity element.

•Inverse of a rotation is rotn. about same axis by -θ



Basics of Group Theory Group Tables

As far as group properties are concerned, individual elements do not matter, what 
matters is how they combine with each other, i.e. their inter-relations.


For small finite groups, a nice way to visualize this is through Group Multiplication Tables

1 -1

1 1 -1

-1 -1 1

Group : {1,-1} 
Group : {E,R} , 

E is rotn. by 0,

 R is rotn. by π  

E R

E E R

R R E

• Rows and Columns corresponds to elements of 

  the group.


•The entry in each square is the result of applying 

  the column group element after the row group  

  element. 


• By convention, the first row/column belongs to the

  identity element.


• Abelian groups have symmetric multiplication 

  tables



Basics of Group Theory Group Tables

E R 1 R 2 R 3 R 4 R 5

E E R 1 R 2 R 3 R 4 R 5

R1 R 1 R 2 E R 4 R 5 R 3

R2 R 2 E R 1 R 5 R 3 R 4

R3 R 3 R 5 R 4 E R 2 R 1

R4 R 4 R 3 R 5 R 1 E R 2

R5 R 5 R 4 R 3 R 2 R 1 E

Group D3: Symmetries of Equilateral Triangle

A

B C

R2

R1

R1: A —> B, B —> C, C —> A 

R2: A —> C, B —> A, C —> B 

   R1, R2: rotn. by 2π/3 and 4π/3 about z axis

A

BC R3

R5

R4

    R3,R4,R5: rotn. by π about axes shown

               through the centroid

R3: A —> A, B —> C, C —> B 

R4: A —> B, B —> A, C —> C 

R5: A —> C, B —> B, C —> A 

Could have generated D3 from R1 and R3

{E, R1, R2, R3, R4, R5} 

          =

{R13, R1, R12, R3, R1R3, R3R1}



Basics of Group Theory Isomorphism
The important thing about a group is how the elements combine, not what the elements are.

 This is expressed through the ideas of isomorphism and homomorphism:

If there is a mapping between elements of two groups which preserves group multiplication

Ga ! Ha Gb ! Hb GaGb = Gc HaHb = HcGc ! Hc

for all pairs of group elements, then the two groups are called isomorphic if the mapping is 
one-on one and homomorphic if the mapping is not one-on one.  Isomorphic groups can be 
treated as the same group.

 Examples of groups which are isomorphic to each other:

All groups with 2 elements are isomorphic to each other ( Z2, inversion, permutation of 2 objects)


The group of 2D rotations and the group U(1)


The group D3 and the group of permutations of 3 objects (try to show this)

If you can show 2 groups are isomorphic

then you can translate properties of 

one to the other

1 -1

1 1 -1

-1 -1 1

E R

E E R

R R E



Basics of Group Theory Subgroups
Subgroup: If G is a group and H is a subset of G, which forms a group with the same group 
multiplication rule as in G, then H is called a subgroup of G  

Examples:

•Z2 {1,-1} is a subgroup of Z4 {i,-i,1,-1}


•Z4 is a subgroup of U(1)


•Set of rotations about the z axis is a subgroup of the set of all rotations


•The symmetries of a square is a subgroup of symmetries of a circle


•Symmetries of a 1D lattice is a subgroup of translation invariance

If a symmetry is broken, say rotational invariance is broken by presence of a lattice, then some 
symmetries may be left intact. They form a subgroup of the original symmetry group 

Direct Product Group: If G and H are two groups whose elements commute, i.e. GaHb=HbGa,


and if K is another group whose elements can be uniquely written as Ka=GaHa, then K is called a 
direct product group of G and H, K = G X H

If a group is a direct product of other groups, then one can study the properties of the 

individual symmetry groups and translate this to the properties of the direct product group easily.


e.g. The group O(3) is a direct product of the groups SO(3) (rotations) and inversion. This is also 
what one means when one says that the standard model has SU(3) X SU(2) X U(1) symmetry


