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Recap of Last Class

• Symmetries as guiding principle


• Shapes and Symmetries: Definition of Symmetry 


• Groups: defn. , examples of groups, examples of sets which are NOT groups


• Set of all symmetry transformations have properties of a group


• Group Tables: Combination Rules, Homomorphism and Isomorphism




Example:

1 -1

1 1 -1

-1 -1 1

Group : {1,-1} 

Classes: {1},{-1}

Basics of Group Theory Conjugacy Classes

Consider a group element Ga. Now consider the set of Group elements GbGaGb-1 , where Gb 

runs over all group elements. This set defines a conjugacy class.

• An element of a group belongs to one and only one class


• Identity element is in a class by itself


• Each member of an Abelian group forms a class by themselves



Example: Rotation Group
Each rotation is characterized by an unit vector for the axis and an angle of rotation R(n̂, ✓)

R(k̂,�)R(n̂, ✓)R�1(k̂,�)
Rotate co-ord. about k by φ

In rotated basis rotate vectors about n by θ

Rotate co-ord back to original 

So rotations by the same angle about different axes form a conjugacy class.


Basics of Group Theory Conjugacy Classes

R�1(n̂, ✓) is a rotation of the co-ordinate 

system about the axis   by angle   n̂ ✓-θ

θ

θ

Overall, we have rotated about some axis (not n in original co-ord system) by θ

Consider a group element Ga. Now consider the set of Group elements GbGaGb-1 , where Gb 

runs over all group elements. This set defines a conjugacy class.



Basics of Group Theory Conjugacy Classes
Consider a group element Ga. Now consider the set of Group elements GbGaGb-1 , where Gb 

runs over all group elements. This set defines a conjugacy class.

Example:

A

BC R3

R5

R4

E R1 R2 R3 R4 R5

E E R1 R2 R3 R4 R5

R1 R1 R2 E R4 R5 R3

R2 R2 E R1 R5 R3 R4

R3 R3 R5 R4 E R2 R1

R4 R4 R3 R5 R1 E R2

R5 R5 R4 R3 R2 R1 E

Group D3: Symmetries of Equilateral Triangle


A

B C

R2

R1

Conjugacy Classes: {E}, {R1,R2}, {R3,R4,R5}

Note that E is rotation by 0, {R1,R2} is rotation by 2π/3, and {R3,R4,R5} are rotations by π



Representation of Groups

Formal Definition: A mapping from group elements Ga to a set of linear operators on a vector 
space (matrices !!) Ta is called a Representation of the group if the mapping preserves group 
multiplication relations.

Examples:

Identity Representation:  All group elements map onto 1 (or identity matrix)

Set of Rotations in 2D:
R(✓) !

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆
R(✓) !

0

@
cos ✓ sin ✓ 0

� sin ✓ cos ✓ 0

0 0 1

1

A

Each symmetry transformation (which was an abstract concept) corresponds to a linear operator 

in the Hilbert space and we would like to study the properties of these operators.

Ga —> T(Ga) Gb —> T(Gb) If Ga Gb= Gc, then T(Ga) T(Gb)= T(Gc)= T(GaGb)



Constructing Representation of Groups
Example: Representation of D3 :

•Take a basis in 3D real vector space, ex, ey and ez. 
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Check using these matrices and the group multiplication tables, that this is a representation of D3

Representations are however, not unique. To see this, let us construct another representation of D3

•The matrix Tij(Ga)= < ei||e’j>= < ei| T(Ga) |ej>. 

•These matrices (one for each transform) form a representation of D3

 ex

 ey

 ez

 e’y

 e’x

 e’z

• Apply the elements of D3 to ex, ey, ez and generate 

 new basis vectors e’x, e’y, e’z.




Function Spaces and Transformation of wfn.s
Consider a spatial symmetry (say rotation) which transforms the co-ordinates. How does a function 
of the co-ordinates (a wavefunction or a field as the case may be) change under this transform?

T (Ga)T (Gb) (~r) = T (Ga) (G
�1
b ~r) = T (Ga) 

0
(~r)

=  
0
(G�1

a ~r) =  (G�1
b G�1

a ~r) = T (GaGb) (~r) preserves Group Multiplication

and provides a representation of G

Rotation of the system followed by the same rotation of co-ordinate axes leads to the same 
functional form of the wavefunction.

ψ(x) ψ’(x)
ψ(x’)= ψ(R-1x)

 

0
(~x) =  (R�1

~x)

T (Ga) (~r) =  (G�1
a ~r)

More generally:  
0
(~r) =  (G�1

b ~r)So



Consider the space of all quadratic functions of (x,y,z), 


                          f(x,y,z)= c1x2+c2y2+c3z2+c4xy+c5yz+c6xz


. Then {x2,y2,z2,xy,yz,xz} can act as a basis set in this vector space.  

| i = (c1, c2, c3, c4, c5, c6)
T ! c1x

2 + c2y
2 + c3z

2 + c4xy + c5yz + c6xz

Apply the symmetry transformations of D3 to x2,y2,z2, xy, yz, xz and generate the new 
basis set. The dot product of the new and old basis defines the matrix T, one for each 

transformation. 

Is there a more systematic way of studying the properties of representations?

Example: Another Representation of D3 :

• We have constructed 2 representations (of 3 and 6 dim) of the same group. 

• It is clear that we can look at cubic fn.s and generate a 10 dim. representation of D3

Constructing Representation of Groups



Irreducible Representations
If one writes down a representation of a group, one can change basis and try to reduce the 
matrices (with same basis trans. for all the matrices) to a block diagonal form. The 
representation for which this cannot be done is called an irreducible representation. Otherwise it 
is said to be reducible.
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Irreducible Representations
We will study the properties of irreps of a group, rather than all possible representations. 


We will show how to reduce a representation into its irreps.

Given a group, how does one find the irreps?

Will not answer this ... assume irreps of groups 

are known ... true for most groups you would 

meet in physics .... we will look up tables people 

have catalogued. 

How do we translate from groups and representations to info about the quantum system?

( )
1

2( )How can we decompose (reduce) 

arbitrary representations into irreps? 

How do we do this? T = T (1) � T (2) � . . .

For finite groups all representations can be built up in this way



Orthogonality Property of Irreps.

See Elliott and Dawber or std. books 
on group theory for proof

gX

a=1

T (↵)
ip (Ga)T

(�)
jq (Ga)

⇤ = �↵��ij�pq
g

s↵

Assume that we know the irreps (the sets of irreducible matrices, one for each group

element).


We will also assume that these matrices are unitary (for finite groups you can always find unitary 
irreps). These matrices then satisfy


order of group

dim. of irrep

The large no. of constraints are at the heart of the ability to predict that certain matrix 
elements of quantum operators should be zero.


We will use the orthogonality properties to reduce a representation into irreps. 

No restriction on i,p,j,q

Huge number of constraints

Sum over Group 

Elements (Group Avg.)

Note: Group avg. replaced by appropriate

         integrals for cont. groups (at least for 

         compact group)



Characters and Orthogonality
Character:  The character of a group representation is the set of traces of the 
representation matrices.  

�a =
X

i

T (↵)
ii (Ga)

So, the elements of a given conjugacy class have the same character

T (Gb)T (Ga)T (G
�1
b ) = T (Gb)T (Ga)T

�1(Gb)
is a similarity transformation under 

which trace is invariant 

Orthogonality of characters:
gX

a=1

T (↵)
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⇤ = �↵��ij�pq
g
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Put p=i,  q=j and sum over i,j
gX
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cp is the number of elements

 in the pth conjugacy class
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(one for each group element)



How to reduce Representations
Given a representation ( g Matrices) of a group, and irreps of the group, how do we reduce the 
representation into irreps?

Taking Trace �p =
X

↵

m(↵)�(↵)
p

T = �↵m
(↵)T (↵) (An irrep can occur more than once in a reduction)If

1

g

X

p

cp�
(�)⇤
p �p =

1

g

X

p

cp�
(�)⇤
p

X

↵

m(↵)�(↵)
p =

1

g

X

↵

m(↵)
X

p

cp�
(�)⇤
p �(↵)

p = m(�)

Using Orthogonality of characters

Identity Class, irrep. matrices are identity 

matrices, characters give dimension of irrep

We need to know the characters of all the conjugacy classes for all the irreps

of the group. These are tabulated in the character table for the group.

{E} {R1,R2} {R3,R4,R5}

T(1) 1 1 1

T(2) 1 1 -1

T(3) 2 -1 0Ro
w
s 

ar
e 
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re

ps

Columns are conjugacy classesExample: D3

For finite groups, no. of irreps

= no. of conjugacy classes



| 
0
i = T (Ga)| i

Transformation of a quantum 

state under symmetry operations:

Group Representations and QM

In the QM Hilbert space, symmetry transformations correspond to linear operators which form 

a representation of the group.

How do operators change under

 a symmetry transform? Â

0
= T (Ga)ÂT�1(Ga) = T (Ga)ÂT (G�1

a )

Defn. of Symmetry in QM:

T (Ga)ĤT�1(Ga) = ĤIf                            , then the Hamiltonian has the corresponding symmetries. 

Note that symmetry is about invariance

 of H, not of eigenstates



Defn. of Symmetry in QM:

T (Ga)ĤT�1(Ga) = ĤIf                            , then the Hamiltonian has the corresponding symmetries. 

Note that symmetry is about invariance

 of H, not of eigenstates

Note that the symmetry operators themselves transform as

Thus, representation operators of elements in a conjugacy class transform amongst themselves.

 T(Ga)  and H can be diagonalized simultaneously.... classification of energy eigenstates. 

  ( For a non-Abelian group, T(Ga) and T(Gb) does not commute. We would need to make a 

   choice of eigenbasis.)


 T(Ga) is conserved, but does it represent an observable? ...  not necessarily!! 


 How many independent conserved quantities would we have?

Group Representations and QM

T (Ga)ĤT�1(Ga) = Ĥ ) [T (Ga), Ĥ] = 0 ) d

dt
T (Ga) = 0



Invariant Subspaces
| ai = T (Ga)| i{| ai}Consider now the set of g states,           where     

These vectors span a subspace which is invariant under the symmetry operations, i.e. vectors 
in this (sub)space transform to other vectors in this (sub)space.

In general these vectors are NOT linearly independent, but one can usually find a subset of s < g 

vectors which are linearly independent.  These can then form the basis vectors for a s dim. 

representation of the group and correspondingly there will be s-fold degenerate states.

Invariant Subspaces and degeneracies:

Consider now an invariant subspace generated from an eigenstate of the Hamiltonian Ĥ| i = E| i

Ĥ| ai = ĤT (Ga)| i = T (Ga)Ĥ| i = ET (Ga)| i = E| ai

So these vectors (and their linear combinations) have degenerate eigenvalues. If these vectors 
are linearly independent, one can make an orthonormal basis set out of their linear 
combinations (Gram-Schmidt procedure) and get a  g dim. representation of the group

(one for each 

group element Ga)

This s dimensional invariant subspace corresponds to a s-dim irrep of the symmetry group.



Irreps Eigenstates and Degeneracies

• The eigenstates of a Hamiltonian can be labeled by the irrep.s of its symmetry group.


• If an irrep is s-dimensional, then eigenstates corresponding to that irrep is s-fold degenerate

2D Potential : V (x, y) = �xy

 e(r, ✓) =
X
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fl(r)e
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Even eigenstates Odd eigenstates

H =
p̂2

2m
+

1

2
m!2

0 x̂
2

1-D SHO: 1D SHO + delta fn.:

H =
p̂2

2m
+

1

2
m!2

0 x̂
2 + ��(x̂)

Examples
Eigenstates are either

 even or odd in x

Applications: Inversion Symmetry

๏ There are 2 irreps given by +1 and -1. (Irreps are 1D matrices or simply numbers)


๏ Eigenstates are either even (corresponding to +1) or odd (corresponding to -1) under inversion.


๏ No degeneracy (all irrep.s are 1D)

All irreps of Abelian groups are 1-D


