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Recap of Last Class

• Conjugacy Classes and Examples


•Representation of Groups: Examples of construction: position space, function space


• Irreps, Characters and Orthogonality relation


•Reduction of a representation into irreps: Use of character Tables


• Example with parity (space inversion)




Applications: Lattice Translation Invariance
Bloch’s Theorem

For a particle moving in a periodic potential V (~r + ~R) = V (~r)

the eigenfunctions can be written in the form

The corresponding group is an Abelian group, so irreps are 1-D. Matrix elements are just numbers

T (~R) (~r) = c(~R) (~r)

T (~R)T ( ~R0) = T (~R+ ~R0) c(~R)c( ~R0) = c(~R+ ~R0) c(~R) = ei
~k·~R

Now

Hence

where

The general solution of this equation is given by the form

k provides the quantum no.
where

The Symmetry group is the translation by lattice vectors with representation 



We will show this for 1-D lattice of N sites with Periodic Boundary Cond.

2⇡

N

Applications: Lattice Translation Invariance
Possible values of k : Brillouin zone and crystal momentum

Bloch’s Theorem: where

Now,

When r= ma, with integer m

This suggests that one can restrict values of k between -𝜋/a and 𝜋/a, and use n as an additional

quantum number. This is the basic idea of working in the “First Brillouin Zone” [ -𝜋/a <k< 𝜋/a] 

with a number of bands [n becomes the band index].

With P.B.C. p=0,1,…N-1



Applications: NH3 molecule

Symmetries of NH3

Group :  C3⌫

{R,R2 } 2C3

R= rotn by 2⇡/3
leaves only N atom fixed

Reflection about plane cont. N and H

N and H atom forming

 reflection plane are fixed

3�⌫ = {�1,�2,�3}

12 D problem 

(3 D for each atom)

Rotations about axis perp to H plane

All 4 atoms are

fixed in this transf.

{E}



Vibrational Modes of NH3 :CM
Unknown               , but it must respect the symmetries of the molecule.                 

Small amplitude oscillations are governed by the expansion of V around the eqbm. config. 

Dij has symmetries of the molecule, we will treat this as eigenvalue problem

We wish to use symmetries to classify the normal modes Qk and frequencies ωk

Bij =
@

2
V

@xi@xj

Dij =
Bijp
mimj

Define and

Normal Co-ord: 
X

j

Dijajk = !2
kaikwhere Eigenvalue Eqn

Independent Harmonic Oscillators



Vibrational Modes of NH3: CM

 Transformations of atomic displacements in 12 dim space will provide


    a representation of the group. 


 If we can find the reduction of this group into irreps, we would be able to classify normal modes 


T (3N)

Need to find the characters of

 the 12 dim representation  �(3N)

�p =
X

↵

m(↵)�(↵)
p

1

g

X

p

cp�
(�)⇤
p �p =

1

g

X

p

cp�
(�)⇤
p

X

↵

m(↵)�(↵)
p =

1

g

X

↵

m(↵)
X

p

cp�
(�)⇤
p �(↵)

p = m(�)

Reduction of representation -----> Characters

12 D problem 

(3 D for each atom)

E 2C3

A1 1 1 1

A2 1 1 -1

E 2 -1 0

3�⌫

Character Table of the Group:



Characters of the 12 dim representation  �(3N)

Only atoms unmoved in a 

transform contribute to 


the character

Let eti be the ith displacement of tth atom        

�(3N)(Ga) =
X

ti

T (3N)
ti,ti (Ga)T (3N)(Ga)eti =

X

t0j

T (3N)
t0j,ti (Ga)et0j

�(3N)(E) = 3N = 12ObviouslyE conjugacy class:

�(3N)
(R✓) = N(R✓)(2 cos ✓ + 1)

where N(Rθ)= no. of unmoved atom = 1

Vibrational Modes of NH3: CM

2C3 conjugacy class: For proper rotation of an atom co-ord, 

0

@
cos ✓ sin ✓ 0

� sin ✓ cos ✓ 0

0 0 1

1

A
T (R✓) =



Characters of the 12 dim representation  �(3N)

�(3N)
(S✓) = N(S✓)(2 cos ✓ � 1)

where N(Sθ)= no. of unmoved atom = 2

Vibrational Modes of NH3: CM
3σ𝜈 conjugacy class: For improper rotation of an atom co-ord, (rotn. followed by reflection)

These normal modes, as written, include translation and rotation of the center of mass of the molecule. 


We are not interested in these modes and will subtract their contribution from the calculated characters.

0

@
cos ✓ sin ✓ 0

� sin ✓ cos ✓ 0

0 0 �1

1

AT (S✓) =



Character contribution of the translation and rotation modes:

For translation modes, �t(S✓) = (2 cos ✓ � 1)

�t(R✓) = (2 cos ✓ + 1)

For rotation modes, �r(R✓) = (2 cos ✓ + 1)

�r(S✓) = �(2 cos ✓ � 1)

�v(S✓) = �(3N)
(S✓)� �t(S✓)� �r(S✓) = N(S✓)(2 cos ✓ � 1)

�v(3�⌫) = 2 (2� 1) = 2
For 3�⌫ , ✓ = 0, N(S✓) = 2

For 2C3, ✓ = 2⇡/3, N(R✓) = 1

�v(2C3) = (1� 2)

✓
2
�1

2
+ 1

◆
= 0

Vibrational Modes of NH3: CM

For vibration modes: 



E 2C3

A1 1 1 1

A2 1 1 -1

E 2 -1 0

6 0 2

3�⌫

�v

Now we can reduce the representation as 2A1 � 2E

So we will have 2 modes (say Q1,Q2)which transform according to A1 irrep. 


Their freq. are generically non-degenerate


2 sets of modes transform  according to E irrep. Each of these are 2-fold degenerate

(say Q3,Q4 is a degenerate pair transf. acc. to E and Q5,Q6 is another degenerate pair.)

Character Table including vibrational modes.

Note: We can say all this without knowing any details of the atomic potentials.

       We cannot compute the normal mode frequencies just from symmetry principles.

Vibrational Modes of NH3: CM



Vibrational Modes of NH3: QM
The QM problem is that of a 6 dimensional Harmonic Oscillator (Q1 … Q6)

Hk = �~2
2

@2

@Q2
k

+
1

2
!2
kQ

2
kH =

X

k

Hk

Eigenenergies of the QM problem nk is occ. no. of kth mode

Eigenstates of the QM problem |n1,n2,…n6>, with wavefn.   (Q1, . . . Q6) ⇠
6Y

k=1

e�!kQ
2
k/2Hnk(!

1/2
k Qk)

We know degeneracies of ωk and transformation properties of Qk (i.e. the irreps they 

transform according to)

What about symmetry properties of the eigenstates?


What about expectation value/ matrix elements of various operators between these states?


Can symmetries tell us anything about that?



Direct Product of Representations
Direct Product of Matrices: The direct product of a n X n matrix A and a m X m 

matrix B is the mn X mn matrix,  A X B with
(A⇥B)ij,kl = AikBjl

�(↵⇥�)(Ga) =
X

ij

T (↵⇥�)
ij,ij (Ga) =

X

ij

T (↵)
ii (Ga)T

(�)
jj (Ga) = �(↵)(Ga)�

(�)(Ga)Character of Direct 

Product of Irreps:

Direct Product of Irrep: T (↵⇥�)
ij,kl (Ga) = T (↵)

ik (Ga)T
(�)
jl (Ga)

Show that these preserve group multiplication

It is clear from the above character composition rule that direct product of irreps is generally 
not an irrep.


So, we should be able to reduce it as before using character tables 

T (↵⇥�) = ��m
(�)T (�)



Direct Product of Representations
T (↵⇥�) = ��m

(�)T (�) m(�) =
1

g

X

p

cp�
(�)⇤
p �(↵)

p �(�)⇤
p

E 2C3

A1 1 1 1

A2 1 1 -1

E 2 -1 0

E X E 4 1 0

A2 X A2 1 1 1

3�⌫

E ⇥ E = E +A1 +A2

Example:

A2 ⇥A2 = A1

1)  Eigenstates/Wfns transform according to irreps. Product of wfn.s transform  according to 
direct product of irreps.

�(↵)
i �(�)

j transform according to the ij row of T (↵⇥�)



Example:  Wfn.s of vibrational modes of NH3

where Hn(x) is the Hermite polynomial of degree n and nk is the occupancy of the kth mode

 The states where the degenerate doublet of E is doubly occupied. We can only form 3 independent 

    states from the doublet —— H2(Q3), H2(Q4) and H1(Q3)H1(Q4), and not 4 as we would naively think about.


    Thus product states of same irrep do not transform as direct 

    product representation, only the symmetrized levels will survive.

�(↵)
sym(Ga) =

1

2
[�(↵)(Ga)]

2 +
1

2
�(↵)(G2

a)

E 2C3

A1 1 1 1

A2 1 1 -1

E 2 -1 0

3 0 1

3�⌫

�E⇥E
sym

�E⇥E
sym = E +A1

 The states where one mode is occupied (nk=1, ni=0 for all others) ~ H1(Qk)~Qk and transform acc. to  

    respective irrep of Qk

Eigenstates of the QM problem |n1,n2,…n6>, with wavefn.   (Q1, . . . Q6) ⇠
6Y

k=1

e�!kQ
2
k/2Hnk(!

1/2
k Qk)

 The ground state is invariant under the symmetries and transform according to A1

 The state where two modes corr. to E and A1 each have occupancy of 1. This transforms as E X A1 = E



Irreducible Set of Operators
Eigenstates are labelled by irreps of the symmetry group. For a s dimensional irrep α, consider the 
basis set { |φαi>} in the corresponding invariant subspace. 

The state (or equivalently the wfn)         

transforms according to ith row of T (↵)

�(↵)
iT (Ga)|�(↵)

i i =
X

l

T (↵)
li (Ga)|�(↵)

l i

Can we extend the concept of states transforming according to an irrep to operators?

Irreducible Set of Operators :

A set of operators, which transform among themselves in the sense 

S(↵)0

i ⌘ T (Ga)S
(↵)
i T (G�1

a ) =
X

j

T (↵)
ji (Ga)S

(↵)
j

are called irreducible operators 

transforming according to T (↵)

These operators have support only in the invariant space spanned by the irrep.



Matrix Elements
2)  If       is an irreducible operator, transforming according to T(α) , and |φ(β)j > a state which 
transforms according to T(β) , then          

Ô
(↵)
i

Ô
(↵)
i |�(�)

j i transforms according to the ij row of T(αxβ)

T (↵⇥�) = ��m
(�)T (�)Now let us reduce

Consider the matrix element 

  The matrix element of        between       and       is non-zero only if  Ô(↵) �(�) �(�) m(�) 6= 0

i.e. if the irrep 𝛾 does not occur in the reduction of (αxβ) , the corr. matrix element is zero 

This is not surprising, the idea of irreps correspond to block diagonalizing matrices, 

so the off-block matrix elements are 0.

At the heart of huge simplification of complex problems



Matrix Elements:  Some Applications

Some of these matrix elements are 0 due to symmetry ...... forbidden transitions ....... 

   selection rules

If we know the matrix elements of an observable A between energy eigenstates, then the 
expectation of the observable is given by

A(t) = h (t)|A| (t)i =
X

nn0

c⇤n(0)cn0(0)ei(En�En0 )tAnn0 Ann0 = hn|A|n0i

If we start with a system in an energy eigenstate |n>, and turn on a time dependent perturbation,  


the system makes transitions to different excited states |m> (of the unperturbed system) 


with a rate 

Time Independent Perturbation Theory:



Matrix Elements:  Some Applications

Example :  Dipole Transitions

Light shining on charge neutral systems (like atoms). The dipole moment (induced) interacts with 

the Electric field by  H1 ~ d.E. To see which transitions are allowed, we need the matrix 
element of the dipole operator between the states.


In 1D, the dipole operator ~ x, so we are interested in matrix elements of x

H =
p̂2

2m
+

1

2
m!2

0 x̂
21-D Harmonic Oscillator:

Transitions are allowed between odd n and even n states. 


Transition between even-even and odd-odd states are forbidden Selection Rule

Irreps:  {1,-1}  x transforms acc. to -1 irrepEven and Odd states

Start with even state |2n>,  x|2n> transforms according to -1 irrep

Start with odd state |2n+1>,  x|2n+1> transforms according to 1 irrep


