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Recap of Last Class

® Conjugacy Classes and Examples

®Representation of Groups: Examples of construction: position space, function space
® Irreps, Characters and Orthogonality relation

®Reduction of a representation into irreps: Use of character Tables

® Example with parity (space inversion)



Applications: Lattice Translation Invariance

‘ ; : Bloch's Theorem
\NAAANANANAN D | o L el B e
For a particle moving in a periodic potential V(7 + R) = V()

the eigenfunctions can be written in the form

"b/;’(?:) — 62.#'7?%,;(77) where u,;'(f) = UE(F-I- R)
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The Symmetry group is the translation by lattice vectors with representation 7 (R))(7) = (7 — R)

The corresponding group is an Abelian group, so irreps are 1-D. Matrix elements are just numbers

TRT(F) = T(B+ F) —> c(B)e() = c(f+ B) —> c(R) =T

—



Applications: Lattice Translation Invariance

Possible values of k : Brillouin zone and crystal momentum

We will show this for 1-D lattice of N sites with Periodic Boundary Cond.
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Bloch’s Theorem: ¥z(7) = €™ "uz() where ug(F) = ug(F+ R)

Now, ¢k+2vr_n(7“) = €i(k+%7n)ruk+%—n(7°)

k

When r= ma, with integer m ¥y 2an (1) = " Uy 220 (7)

This suggests that one can restrict values of k between -m/a and m/a, and use n as an additional

quantum number. This is the basic idea of working in the “First Brillouin Zone" [ -m/a <k< m/d]
with a number of bands [n becomes the band index].

Yk (r) = e ug(r) ug (1) = ug (1 + a)

With PBC.  9p(r) = Yp(r + Na) = e Ny (r) g = 2—”% p=0,1,..N-1
a



Applications: NH3 molecule 12D problem
(3 D for each atom)

: =
Symmetries of NH; ' a2
i
Group : CSV Molecular SEOIeIry
trigonal pyramiudal)
Rotations about axis perp to H plane
{E} RR?} —> 2Cs

All 4 atoms are R= rotn by 27/3

fixed in this transf. leaves only N atom fixed

Reflection about plane cont. N and H

30, ={01,09,03}

|

N and H atom forming
reflection plane are fixed




Vibrational Modes of NHs :CM

e N
Unknown V(r1,..r4) , but it must respect the symmetries of the molecule.

Small amplitude oscillations are governed by the expansion of V around the egbm. config.

\_ J
H_Zl 2 EZB.... 52V e e D
= : 2mzqf,; e 5 : i74i4; Bi;j = axiaxj qi = T4 7
Define D;; = Biy and o; =/m;q; —> H = 12@2 + EZD-'a'ao
MM ¢ v 2@, v 22,], e

2
Normal Co-ord: Q4 = Z aikQr Where E Dz’jajk — WrQjp —>» Eigenvalue Eqn
k J

1 ~2 22
H = 5 Z Q1 + wi Qs Independent Harmonic Oscillators
k

Di; has symmetries of the molecule, we will treat this as eigenvalue problem

We wish to use symmeftries to classify the normal modes Qk and frequencies wk
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Vibrational Modes of NHz. CM 5 hr oot atom)
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@ Transformations of atomic displacements in 12 dim space will provide

. 3N Molecular geometry
a representation of the group. TBN) {agonl presiuoal

@ If we can find the reduction of this group into irreps, we would be able to classify normal modes
TBN) = ¢ _ m (DT

Reduction of representation ----- > Characters Z m(o‘)x(o‘)

(7 Z%X(ﬁ)* - Z%X(ﬁ)* me)X(a) _ me) Z%X(m* (@) _ ()

p

Character Table of the Group:

E 2C; 30,

Al | | | Need to find the characters of

the 12 dim representation XN

Az I I -1




Vibl"a'l'ional MOdeS OF NH3: CM Characters of the 12 dim representation X(

Let eti be the i displacement of t™ atom
Only atoms unmoved in a

3N (3N) (3N) (3N) transform contribute to
A Z Tyjti (Ga)er; X Z Lot the character
E conjugacy class: Obviously xCNM(F)=3N =12
2C3 conjugacy class: ‘For proper rotation of an atom co-ord,
T(Rg)=( cosf sinf 0 o
—sinf cosf O 0=
0 0 1

X(BN)(RQ) = N(Ry)(2cosf + 1)

where N(Rg¢)= no. of unmoved atom =1

3N)



Vibrational Modes of NHs. CM  cCharacters of the 12 dim representation XN

30y conjugacy class: For improper rotation of an atom co-ord, (rotn. followed by reflection)

A ,4:
‘ T(S,) — cosf sinf O
' (S0) —sinf cosf O
\ o 0 0 -1
— f =0

X(BN)(SQ) = N(Sp)(2cosf — 1) where N(S¢)= no. of unmoved atom = 2

'These normal modes, as written, include translation and rotation of the center of mass of the molecule.
wWe are not interested in these modes and will subtract their contribution from the calculated characters.

—
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Vibrational Modes of NHs. CM

Character contribution of the translation and rotation modes:
For translation modes, x:(Rg) = (2cosf + 1) x+(Sp) = (2cos§ — 1) xt(E) =3

For rotation modes, x,(Ry) = (2cosf + 1) Xr(Sg) = —(2cosf —1) x-(E)=3

For vibration modes: Xv(Ro) = x®N) (Ro) — x¢(Ro) — xr(Ro) = [N(Rp) — 2][2cos 6 + 1]

—1
For 2Cs, 0=21/3, N(Rg)=1  xu(2Cs)=(12) (27 " 1) — 0

Xo(Se) = XN (Sp) — x¢(Sp) — xr(Se) = N(Sp)(2cosd — 1)

For 30,, 8 =0, N(Sp) =2 Xo(30,) =2(2—-1) =2

Yo (E) = XBN(E) — x4(E) — x+(E)=12-3—-3=6



Vibrational Modes of NHs. CM

Character Table including vibrational modes.

m(a) — ZC X(O‘)* E 2C; 30_1/
Al I I I
mA1=é21><6+2><1x0+3><1><2:2
Az I I -1
1
A2__ —_ —
m —6ZI><6+2><1><0-|-3><( 1% 2=0 E 5 N 0
_
m =622x6+2x(—1)x0+3x0x2=2 X’U 6 0 2
Now we can reduce the representation as 241 & 2F

So we will have 2 modes (say Qi,Qz)which transform according to A; irrep.

Their freq. are generically non-degenerate

2 sets of modes transform according to E irrep. Each of these are 2-fold degenerate
(say Q3,Q4is a degenerate pair transf. acc. to E and Qs5,Qe is another degenerate pair.)

Note: We can say all this without knowing any details of the atomic potentials.
We cannot compute the normal mode frequencies just from symmetry principles.



Vibrational Modes of NHs3: QM

The QM problem is that of a 6 dimensional Harmonic Oscillator (Q; ... Qe)

2 0% 1
H = H = — —wiQ)? W3 =Wq4 Wy =W
Ek k Hy, 2 502 + kaQk 3 4 W5 6

Eigenenergies of the QM problem €= Zhwk(nk +1/2) nk is occ. no. of k™ mode
k

6
Eigenstates of the QM problem In;,nz,...ne>, with wavefn.  ¥(Q1,...Qs) ~ || e 2, (wy " Qu)

k=1

We know degeneracies of wk and transformation properties of Qx (i.e. the irreps they
transform according to)

What about symmetry properties of the eigenstates?

What about expectation value/ matrix elements of various operators between these states?

Can symmetries tell us anything about that?



Direct Product of Representations

Direct Product of Matrices:

The direct product of a n X n matrix A and am X m
matrix B is the mn X mn matrix, A X B with

Direct Product of Irrep:

Character of Direct
Product of Irreps:

(A X B)ijr = AirBji

T (Ga) = T (Ga)TY (G

1

Show that these preserve group multiplication

(e ZTW ZT(“ Go)T}; (Ga) = X' (Ga)x P (Gu)

13,%]

iI’r is clear from the above
not an irrep.

character composition rule that direct product of irreps is generally

|
|So we should be able fo reduce it as before using character tables

T(Oﬁxﬁ) — @7

m )T m() = ZC X% (@) 5 (8)




Direct Product of Representations

T@xB) — g mM T () EZC KO X ()3 ()

9 p

E 2C3 30,

Example:

EXE:E—I—A1+A2

A | | -1

A2 X A2 — Al a 2 -1 0
EXE 4 | 0

Ax X Az | | I

1) Eigenstates/Wfns transform according to irreps. Product of wfn.s transform according to
direct product of irreps.

( ¢(a) ¢(ﬂ) Z Tl(za) (a) T(ﬂ) Qb(ﬂ) Z Tl(za) T(ﬂ) )|¢l(04)> |¢§ﬂ)>
= ST Gl o)

b o
¢@a)¢§- ) transform according fo the ij row of 7**?



Example: Wfn.s of vibrational modes of NHs

6

Eigenstates of the QM problem Iny,nz,...ne>, with wavefn.  ¥(Q1,...Qe) ~ [ [ e™“*@/2H,, (w),/*Qu)
k=1

where Hq(x) is the Hermite polynomial of degree n and ng is the occupancy of the k™ mode

< The ground state is invariant under the symmetries and transform according to A

< The states where one mode is occupied (n=1, ni=0 for all others) ~ Hi(Q«)~Qx and transform acc. to
respective irrep of Qx

(2 The state where two modes corr. to E and A, each have occupancy of 1. This transforms as E X A; = E

< The states where the degenerate doublet of E is doubly occupied. We can only form 3 independent
states from the doublet — H2(Q3), H2(Q4) and Hi(Q3)Hi(Qs), and not 4 as we would naively think about.

Thus product states of same irrep do not transform as direct

product representation, only the symmeitrized levels will survive. E 2C; 30,
A | | |
(o) 1 () 2 1 (a) (2
Xsym(Ga) — i[X (Ga)] + §X (Ga> Az | | -
E 2 I 0
EXE
Xsy>7<n = b+ Al XfyﬁE 3 0 |




Irreducible Set of Operators

Eigenstates are labelled by irreps of the symmetry group. For a s dimensional irrep «, consider the
basis set { ly*>} in the corresponding invariant subspace.

| l transforms according to ith row of 7

, ()
(T(Ga)|qb§a)> _ ZTl(ia)(Ga)gbl(a)>j The state (or equivalently the wfn) ¢

Can we extend the concept of states transforming according to an irrep to operators?

[Irreducible Set of Operators :

A set of operators, which transform among themselves in the sense

SZ-(O‘), = 7(G,)S (a)T ZT(a) (a) are called irreducible opera’rc()r)s
transforming according to 1"

These operators have support only in the invariant space spanned by the irrep.



Matrix Elements

2) If O§“) is an irreducible operator, transforming according to T, and [¢®; > a state which
transforms according to T®) , then

0A§a)\(b§[3 )> transforms according to the ij row of T

Now let us reduce  T(@*8) — @Wm(W)T(W)

Consider the matrix element <¢/9)|O§a)|¢§'ﬁ)>

@ The matrix element of O between ¢%) and #"is non-zero only if m() £0

i.e. if the irrep y does not occur in the reduction of («x3) , the corr. matrix element is zero

This is not surprising, the idea of irreps correspond to block diagonalizing matrices,
so the off-block matrix elements are 0.

At the heart of huge simplification of complex problems



Matrix Elements: Some Applications

If we know the matrix elements of an observable A between energy eigenstates, then the
expectation of the observable is given by

At) = (@O]A(1) = Y cr(0)en (0) =B Ay Ay = (n] Aln)

nn’

Time Independent Perturbation Theory:  EY) = (0|H|0) E® ~ -3 (01 |n) (n|H1]0)

€En — €
- n 0

If we start with a system in an energy eigenstate In>, and turn on a time dependent perturbation,

H1 — }\eith
the system makes transitions to different excited states Im> (of the unperturbed system)
with a rate > R 5
Prn ~ A7 [(m|Aln)|
@some of these matrix elements are O due to symmetry ... forbidden transitions .......

selection rules



Matrix Elements: Some Applications

Example : Dipole Transitions

Light shining on charge neutral systems (like atoms). The dipole moment (induced) interacts with
the Electric field by Hl ~ d.E. To see which transitions are allowed, we need the matrix
element of the dipole operator between the states.

| N . | 21
1-D Harmonic Oscillator: =L + —mws&?
2m 2

In 1D, the dipole operator ~ x, so we are interested in matrix elements of x

Irreps: {l,-1} Even and Odd states x transforms acc. to -1 irrep

Start with even state |2n>, x|2n> transforms according to -1 irrep

Start with odd state |2n+1>, x|2n+1> transforms according to 1 irrep

Transitions are allowed between odd n and even n states.

Transition between even-even and odd-odd states are forbidden Selection Rule



