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Recap of Last Class

• Vibrational Modes of NH3 : Matrix Elements


•Continuous Symmetry: Parametrization 


•Infinitesimal transformations and Generators (Translation and Rotation as e.g.)


•Finite Transformations


• Properties of Generators : Lie Brackets (Ang. Momentum Commutation Relations)




Generators and Lie Brackets
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  The generators of an Abelian group commute, so structure constants are all 0 E.g.: [p̂
x

, p̂
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Lie Brackets and Structure Constants for 3D Rotation
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Will focus on 3D Rotation from now on

Note: We can choose any representation to calculate this
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Lie Brackets for 3D Rotation
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Rotation Operator for finite rotations D(n̂, ✓) = e�i~L·n̂✓
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Evaluating other commutators in similar fashion Angular Momentum 

commutation relations



Choice of EigenStates
Lx,Ly,Lz are all conserved, and their eigenstates would be H eigenstates (provide quantum no.s)


But they do not commute with each other, so cannot write simultaneous eigenstates of all 3. 


Need to make a choice which eigenstate to use.
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Casimir Operator

[L2, Li] = 0

Use

Common eigenstates of L2 and Lz

Lz|l,mi = m|l,mi

Undetermined (for now) l (>0) and m

L2|l,mi = l|l,mi



Raising/Lowering Operators
L± = L
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± iL
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Raising-Lowering Operators

LzL
±|mi = (L±Lz ± L±)|mi = L±(m± 1)|mi

So, raising/lowering operators increase/decrease the eigenvalue of Lz by 1
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Use

Lz|mi = m|miEigenstate of Lz

Eigenstate of L2

Since [L2,Li]=0, [L2,L+]=0 and [L2,L-]=0

So, raising/lowering operators conserve the eigenvalue of L2 

Applying L+ increases eigenvalue of Lz by 1, while keeping eigenvalue of L2 fixed. Can we keep 
increasing eigenvalue of Lz like this forever?

L2L±|l,mi = lL±|l,miLzL±|l,mi = (m± 1)L±|l,miNow and

L±|l,mi = c±|l,m± 1iSo



Common eigenstates of L2 and Lz
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Common eigenstates of L2 and Lz
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For a given l

Since | l, mmax> can be reached from |l, mmin> by applying L+ successively , 

mmax-mmin =n (non-negative integer)

Half Integer



Common eigenstates of L2 and Lz
j = m
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j labels the irreps/invariant subspaces and |m> states provide a basis in this subspace

2j+1 dimensional  invariant subspace of the rotation group

The irreps of rotation group are labeled  by half-integers, j= 0, 1/2, 1, 3/2, 2,.....
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 Orbital Angular momentum
~L = ~r ⇥ ~p Spherical Polar Co-ordinates: (r, ✓,�) = (r, n̂)
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 Orbital Angular momentum
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Criterion for Symmetry:   Hamiltonian commutes with all the generators of the Lie group

Irreducible basis functions for (θ,φ) are the spherical Harmonics  (l)
nm(~r) = R(l)

n (r)Y m
l (✓,�)

Degeneracy corresponding to rotational symmetry:      is independent of m. 


        (2l+1) fold degeneracy corresponding to the dimension of the irrep.

✏nl

Atomic Physics Nomenclature:  l=0 --> s-wave,  l=1 --> p-wave,  l=2 --> d-wave etc.

s-wave orbitals are non-degenerate, p-wave is 3-fold degenerate (px,py,pz), d-wave is 5-fold 
degenerate (dz2 dx2-y2, dxy, dyz, dxz ) etc.

p-wave basis fn.s: px ~ Y11+Y-11 ~ x,          py ~ -i(Y11-Y-11) ~ y ,            pz ~ Y01~z,

                       dz2 ~ Y02 ~ z2,       dx2-y2 ~ Y22 + Y-22 ~ x2-y2 


dxz ~ Y12 + Y-12 ~ xz,       dyz ~-i( Y12 - Y-12 )~ yz,     ,       dxy ~-i( Y22 - Y-22 )~ xy

d-wave basis fn.s:



Particle in a spherically symmetric potential

In H atom, the energy does not depend

 even on l, En ~1/n2 . Is this accidental or are we 

missing something?

 What about half-integer values of l ?   Orbital Angular momentum only allows integer 
irreps.


 The states/co-ordinates corresponding to half-integer irreps are not related to rotn. of 
spatial co-ord.


 This will be generically called spin-degrees of freedom (spin degrees allow integer valued 
irreps)



j = 1/2 and Spin
2 dimensional irrep of rotation group.  Basis states are |1/2, 1/2i = |+i and |1/2,�1/2i = |�i
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Rotation by 2π leads to a negative sign D(n̂, 2⇡) = cos(⇡) = �1

Need a 4π rotation to come back to original state.  

Rotation operator:



j = 1/2 and Spin
Spin Precession and 4π rotations

H = gµB
~B · ~S = !SzSpins in magnetic field:

U(t) = e�i!Szt = D(ẑ,!t)Time Evolution:

! = gµBB

Evolution of expectation 
values:
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Precesses with 2π/ω

Evolution of state 
vector: |↵(t)i = e�i!t/2|+ih+|↵i+ ei!t/2|�ih�|↵i Precesses with 4π/ω

Measured in Neutron interferometry experiments

Larmor Frequency
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VOLUME 35 20 OCTOBER 1975 NUMBER 16

Observation of the Phase Shift of a Neutron Due to Precession in a Magnetic Field»'

S. A. Werner
Physics DePartment, University of Missouri, Columbia, Missouri 68801

and

R. Colella and A. W. Overhauser
Physics Department, Purdue University, Lafayette, Indiana 47907

and

C. F. Eagen
Scientific Research Staff, Ford Motor ComPany, Dearborn, Michigan 48lZI

(Received 27 August 1975)

We have directly observed the sign reversal of the wave function of a ferm. ion produced
by its precession of 2& radians in a magnetic field using a neutron interferometer.

It is well known that the operator for rotation
through 2m radians for a fermion causes a rever-
sal of the sign of the wave function. We have di-
rectly observed this effect for neutrons precess-
ing in a magnetic field using an interferometer
of the type first developed for x rays by Bonse
and Hart. ' This experiment was first suggested
by Bernstein2 in 1967. At nearly the same time
the possibility of observing this effect was noted
by Aharonov and Susskind' and a tunneling experi-
ment using electrons was proposed.
The interferometer, He' detectors, and periph-

eral apparatus employed in this experiment are
the same as those used in the recent observation
of gravitationally induced quantum interference. 4

A monoenergetic, unpolarized neutron beam (h
=1.445 A) is split at point A of the interferome-
ter by Bragg reflection (Fig. 1). The one beam
passes through a transverse dc magnetic field on
the path AC. The relative phase of the two beams
where they recombine and interfere at point D is
varied by adjusting the magnetic field B.
If we take the Hamiltonian for the neutron of

P =+ 2'„p~MXBl /h'. (2)

Here the + signs are for spin-up and spin-down
neutrons; g„ is the neutron magnetic moment in
nuclear magnetons (=-1.91), ttN is the nuclear
magneton, h is Planck's constant, M is the neu-

Cg

FIG. 1. A schematic diagram of the neutron inter-
ferometer. On the path AC the neutrons are in a mag-.
netic field J3 (0 to 500 G) for a distance l (2 cm).

momentum p and magnetic moment p to be

II =P'/2M —p,'B,
it is easy to show that the phase shift to first or-
der in B is

1053
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Magnetic Field phase shifts the state of A-C-D beam.  

Interference between phase shifted and non-phase shifted beam. 

The B field is changed to obtain successive maxima.This 

corresponds to δω=4π.  δω=2π gives minima corresponding 

to π phase shift.

VOLUME 357 NUMBER 16 PHYSICAL REVIEW LETTERS 20 OcTQBER 1975

I, =I,(0)+I,(k)
= 2 n[1 + cos(5 +P)] + z n [1 + cos(6 —P)]
=n[1+cos5 cosP]. (4)

In these expressions we have taken P to be de-
fined by Eq. (2) with the plus sign. The constants
e and y are the same instrumental parameters
of Ref. 4. Thus, if the residual phase & is fortui-
tously m!2, Sm/2, . . . , there will be no observ-
able effect of the magnetic field on the intensi-
ties. ' We circumvent this problem by first ro-
tating the interferometer about the incident beam
AB, thus using the effect of gravity to set the
phase at a minimum of I2-I, which insures that
5=0, 2m, . . . . The major problem in this experi-
ment was finding a method for producing a vari-

THREADED Roo

tron mass, and l is the distance over which the
neutron is in the magnetic field.
We must add the contributions of spin-up and

spin-down neutrons together since the experiment
was done with unpolarized neutrons. There is al-
ways a residual phase shift 6 in the interferome-
ter due to various causes, including gravity. The
counting rates at detectors C, and C, are expect-
ed to be

I, =I,(S) +I,(&)
= [2y —z n cos(& +p)]+ [~zy —an cos(& —p)]
=y —n cosbcosp,

B/ = 272/A, , (5)

where B is in gauss, l in centimeters, X in ang-
stroms. It is clear that the leakage field from
the magnet must be included in a comparison of
experiment with theory. We have experimentally
determined B with a small magnetic field probe
along the two beam paths ABD and ACD. The ef-
fective Bl for our magnet and interferometer is

(ai) =2.7S„,(G cm), (6)

where Bgzp is the magnetic field in the magnet
air gap.
Our first results are shown in Fig. 3. The os-

cillation period is 62+2 G. Thus,
(Il/) = 242/X. (7)

The agreement of this result is within the experi-
mental errors which we are willing to assign to
the measurement of the effective B/.
It is clear that we have observed the complete

rotation symmetry demanded by the spinor char-
acter of the neutron wave function. In classical
physics 2@m rotations are unobservable. It should
also be noted that in a superconducting quantum
interference experiment this effect is not observ-

able magnetic field ( 0 to 500 G) of uniform in-
tensity over the beam dimensions (2 mm&& 10 mm)
in a limited space, which does not disturb the in-
terferometer by heating, or in any other way.
Our solution to this problem was to construct a
small magnet using two cobalt-samarium perma-
nent magnets, one of which has a variable posi-
tion as shown in Fig. 2.
Equation (2) predicts that the field required for

a precession of 4m (complete period) is

COBALT-
$AHARILl 8
MAGNETS

~BRASS

& S..:N ~&

~N 5~

~ SOFT zgoN

3100
NEUTRON
COUNTS

290C

2700

2500

2500 0 40 90 120 160
GAP

AIR ( AP

FIG. 2. Diagram of the magnet used in this experi-
ment.

FIG. 3. The difference count, I2-I3, as a function of
the magnetic field in the magnet air gap in gauss. Ap-
proximate counting time was 40 min per point.
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