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Recap of Last Class

® Vibrational Modes of NH3 : Matrix Elements

eContinuous Symmetry: Parametrization

eInfinitesimal transformations and Generators (Translation and Rotation as e.g.)
oFinite Transformations

® Properties of Generators : Lie Brackets (Ang. Momentum Commutation Relations)



Generators and Lie Brackets

@ The generators of an Abelian group commute, so structure constants are all O E.g.t [Pz, Dy =0

Will focus on 3D Rotation from now on

Lie Brackets and Structure Constants for 3D Rotation €T T
y | =Ra0)| v
z/ <

cos —sinf O 1 0 0 cosh 0 sinf
R.(0) = sinf cosf O R.(0)=| 0 cosf —sinf R,(0) = 0 1 0
0 0 1 0O sinf cosf —sinf 0 cosf

For infinitesimal rotations, cosf ~ 1 —6%/2, sinf ~ 6

1—62/2 ) 0 1 0 0 1—-6%/2 0 0
R.(0) = 0 1-02/2 0 | R.(0)=1] 0 1- 6% /2 —0 R,(0) = 0 1 0
0 0 1 0 0 1—62/2 —0 0 1-6%/2

Note: We can choose any representation to calculate this



Lie Brackets for 3D Rotation

2
1—6%/2 "y 0 1 0 0 1-6%/2 0 6
R.(0) = 0 1-¢2/2 0 | Re(0)=1] 0 1-0%/2 —0 R,(0) = 0 1 0
0 0 1 0 0 1—-6%/2 —6 0 1-—6%/2

1—62/2 0 1-0%/2 0 0
R.(0)R,(0) = 62 1 — 92 /2 R,(0)R,(0) = 0 1-6%/2 -6
Y 1 — 92 —0 0 1 —6?

0
R ()R, (0) — ( 0 ) = R.(0%) —1

Rotation Operator for finite rotations D(ﬁ, (9) — @_iL’rf”e

-

1 —iL,0 — L26°/2)[1 —iL,0 — —L70%/2] — [1 —iL,0 — L6 /2][1 — iL,0 — L26° /2]
=1—4L,0° -1 |
= |Ly, Ly] =1L,

Angular Momentum

Evaluating other commutators in similar fashion ) :
commutation relations

[LZ', Lj] — ieijkLk



Choice of EigenStates

Lx,Ly,L. are all conserved, and their eigenstates would be H eigenstates (provide quantum no.s)
But they do not commute with each other, so cannot write simultaneous eigenstates of all 3.

Need to make a choice which eigenstate to use.

Casimir Operator  L? = L,L,+ L,L,+ L,L,

Use

[LZ, Li] — ( (L dlg] = tegsmLis

‘Common eigenstates of L2 and L,

L.|l,m) =ml|l,m) L?|l,m) = l|l,m)

Undetermined (for now) | (>0) and m



Raising/Lowering Operators

Raising-Lowering Operators L*=1L,+ Ly Use

L., L*] =iL,+ L, = +(L, +iL,) = L~ Ly, L;] = deijn L

Eigenstate of L. szm> — m\m}

L.LE|m) = (LTL, £ LT)|m) = L¥(m £ 1)|m)

So, raising/lowering operators increase/decrease the eigenvalue of L, by 1

Eigenstate of L? L2|l> = l‘l)
Since [L2Li]=0, [L3L*]=0 and [L2L-]=0  L2L*|l) = L*L2|l) = IL¥|])

So, raising/lowering operators conserve the eigenvalue of L?
Now L.L*|l,m)=(m+1)L*l,m) and L2L*|l,m) =IL%|l,m)

So LE|l,m) = ci|l,m £1)

Applying L* increases eigenvalue of L, by 1, while keeping eigenvalue of L? fixed. Can we keep
increasing eigenvalue of L like this forever?



Common eigenstates of L and L,

1 — _
(t,m|L? = L2[l,m) = (I, m|L3 + Ly|l,m) = Z{I,m|L* L™ + L™L*|l,m) > 0
So [ — m2 > () We cannot keep applying raising operator to the

eigenstates ad infinitum since it raises m values
without changing | values

L™ LT, maz) = 0= (Ly — iLy)(Ly + iLy)|l, Mimaz) = 0= L2 + LI + i[Ly, Ly]|l, Myaq) = 0

2
max

$L2—L§—Lz\l,mmw> =0=10—m — Momaz |l Mmaz) = 0

[ = Mmax (mmaac + 1)

LYl muin) = 0 = (Ly +iLy)(Ly — iLy)[l, mmin) = 0= L2 + L, — i[Ly, Ly]|l, Munin) =0

- 2 - Lg + L |l,mpmin) =0=1— m?mn + Momin|l, Mmin) = 0



Common eigenstates of L and L,

L.|l,m) =m|l,m) L?|l,m) = l|l,m)
For a given |
| = Mmax (mma:c + 1) | = mmzn(mmzn — 1)

Since | |, mmax> can be reached from |l, mmin> by applying L* successively ,
Mmax-Mmin =N (non-negative integer)

2 . 2
mma,w + Mmax = mmin — Mumin mmam + mmzn — 0
(mmaw + mmz’n)(mmaw — Mymin T ]-) =0 Mmax — —Mmin — n/z

(m T )(n n 1) _ 0 Half Integer



Common eigenstates of L% and L,

Defining ) = Mmax L.|j,m) =m|j,m) L?|j,m) = j(j + 1)|j,m) (', m'|j,m) = 055/ Omm/

4 (g, m'[L2]3,m) = 5(5 + 1)855 Omms ] ( (', m/[Lz2], m) = mdj5 O ]

l

Matrix Elements:

Li’ja m> — C;'I:mlj7m + 1> <j/7m/‘L_L+’j7m> — ‘C;_m‘25jj’5mm’

<j/7m,|L_L+|j7 m> — <j/7m/|L2 T Lz T Lz|j7 m> — J(] + 1) T m(m + 1>5jj’5mm’

C;Fm:\/(j—m)(j+m+1) cij(Hm)(ij)j (<j’,m’|e_if"ﬁ9|j,m>N(Sjj/]

|
\k
~_

The irreps of rotation group are labeled by half-integers, j= 0, 1/2, 1, 3/2, 2,....

2j+1 dimensional invariant subspace of the rotation group

j labels the irreps/invariant subspaces and |Im> states provide a basis in this subspace
Rotation Operator:  D(a, 8,7) = D.(a)D,(B)D. () = e~ L= thuPemthan

DY) (a, B,7) = (j,m/ e E=¥e vl e =L j m) = e~ et (5 ! | e~ LB )

dy) (8)



Orbital Angular momentum

L =7 x D Spherical Polar Co-ordinates:  (r,0,¢) = (7, 1)

Infinitesimal rotation about x axis: 1 —iL,x|r,n) =|r,n+ T x nyx) =|r,0+ 60,0+ d¢)

Now 7 = sinf cos ¢z + sinfsin ¢y + cos 0z

So  dn=x(&xn)=—xcosly+ xsinfsin ¢z

On the other hand

n + on = sin(f + d0) cos(¢p + d¢)x + sin(f + 60) sin(¢ + dp)y + cos(6 + §6)2

Expanding to linear order in small changes

01 = (cos 0 cos pdf —sin @ sin pdp)x + (cos 0 sin 6 +sin O cos pdp)y —sin 002

Comparing, 00 = —x sin(¢) 0p = —Y Cot(é’) COS(Qb)



Orbital Angular momentum
00 = —x sin(¢) 0 = —x cot(0) cos(¢)

(1,0, 01 + iLyx|a) = (1,0 + 00, ¢ + 0¢|a) = (1,0, p|a) + 600y (r, 0, dla) + 6¢Dy(r, 0, ¢|)

[Lx = _—_1[sin(q5)5’9 + cot(0) cos(¢)0y] j

[/

Similarly [ L, = “[cos(¢)3p — cot(6) sin(¢)d,) j [ L. — la(/)j

1
1 8 1 9 9
L? = — in ) —
[ [sin298¢2 T Sn6 08 Sm@ae] j

1 0? 1 8 9 A
2000 smooe 0o L+ 1>] (AL, m)

(A|L*|l,m) = I(l + 1){n|l,m) = [

Spherical Harmonics Y, (0,¢) are the wfn.s of basis states of irreps of Rotation group



Particle in a spherically symmetric potential

L2
2mir?

2
V() - B|r0.6)=0 = |50 E V() -

2m 2m ] v=0
Criterion for Symmetry: Hamiltonian commutes with all the generators of the Lie group

Irreducible basis functions for (0,0) are the spherical Harmonics p (7 = RO (r)Y™(6, ¢)

Degeneracy corresponding to rotational symmetry: €] is independent of m.

(21+1) fold degeneracy corresponding to the dimension of the irrep.

Atomic Physics Nomenclature: [=0 --> s-wave, |=1 --> p-wave, |=2 --> d-wave efc.

s-wave orbitals are non-degenerate, p-wave is 3-fold degenerate (px,py.pz), d-wave is 5-fold
degenerafe (dzZ dx2_y2, dxy, dyz, dxz) e‘l'C.

~S

p-wave basis fn.s: Px = YY1 T x, -i(Yh-Yh) Ty, p: 7 Y%7z,

d-wave basis fn.s: dze 7Y% Tz diP BT Y+ Y2 T X2yt

dxz ~ Y12 + Y-IZ ~ XZ, dyz ~‘-|( Y12 - Y_lz )~ YZ, , dxy ~‘-|( Y22 - Y_22 )~ Xy



Particle in a spherically symmetric potential

Orbitals

In H atom, the energy does not depend
even on |, E, ~1/n? Is this accidental or are we
missing something?

<9 X

@ What about half-integer values of | ? Orbital Angular momentum only allows integer
irreps.

@ The states/co-ordinates corresponding to half-integer irreps are not related to rotn. of
spatial co-ord.

@ This will be generically called spin-degrees of freedom (spin degrees allow integer valued
irreps)



j = 1/2 and Spin

2 dimensional irrep of rotation group. Basis states are  [1/2,1/2) = [+) and [1/2,-1/2) = |-)

The Pauli matrices _ (0 1 (0 —i (1 0
Oy (1 O*) Uy_(i O) Uz—(o 1

correspond to the angular momentum (spin) operators through S5; = 50

Si satisfies angular momentum commutation relations [S’ia Sj] — igijksk

3 7

Rotation operator:  D(a, 3,7) = e 302050y p 5027

Rotaton aperator: - D(,6) = ™74 = (T TG0 s im0 )

Rotation by 21 leads to a negative sign  D(n,27) = cos(m) = —1

Need a 41 rotation to come back fo original state.



j = 1/2 and Spin

Spin Precession and 4m rotations

Spins in magnetic field: H = g,uBE .S = wS, w=guphb Larmor Frequency
Time Evolution:  U(t) = e "= = D(3,wt)

Evolution of state

_ —iwt/2 wt/2] \/ .
vector: la(t)) = e [+) (+]a) + €<= (—|a) Precesses with 41/w
Evolution of expectation (S:(t)) = (S:(0)) cos(wt) — (S,(0)) sin(wt)
values: Precesses with 2m/w

(Sy(t)) = (5y(0)) cos(wt) + (52(0)) sin(w?)

Measured in Neutron interferometry experiments
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Observation of the Phase Shift of a Neutron Due to Precession in a Magnetic Field* -/
S. A. Werner | . . R
Physics Deparvtment, University of Missouvi, Columbia, Missouri 65201 fefcfg":et}e;r Aglc‘ihtirél?)talfhﬁacgii;nn(;ﬁltginzezzio?nl:t?:‘aig—
and netic field B (0 to 500 G) for a distancel (2 cm),
R. Colella and A. W. Overhauser
* Physics Depavtment, Puvdue University, Lafayette, Indiana 47907
and
C. F. Eagen
Scientific Reseavrch Staff, Fovd Motor Company, Deavborn, Michigan 48121
(Received 27 August 1975)
We have directly observed the sign revérsal of the wave function of a fermion produced
by its precession of 27 radians in a magnetic field using a neutron interferometer.
3300r
3100
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Magnetic Field phase shifts the state of A-C-D beam. 2900
Interference between phase shifted and non-phase shifted beam 2700
The B field is changed fo obtain successive maxima.This 2500l
corresponds to dw=4m. Sw=2m gives minima corresponding
. 2300 ) ] L ! ] !
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FIG. 3. The difference count, I, ~I;, as a function of
the magnetic field in the magnet air gap in gauss. Ap-
proximate counting time was 40 min per point,



