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Recap of Last Class

•Irreps of Rotation Group: constraints on quantum numbers


• Matrix element of operators within the irrep. 


•Orbital Angular Momentum and Spin




Irreps of Lie Groups and Orthogonality
Finite groups ——> orthogonality relations between irrep matrices and characters ——> reduction of 

a representation into its irreducible parts. 
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             The measure depends on parametrization. 
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Irreps of Lie Groups and Orthogonality

With this caveat of the measure, orthogonality reduction of a representation into irreps can now 
be studied 
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R2 : Irreps Generator: Lz = �i
@
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Representation

 (r, ✓) =
X

m

 m(r)eim✓The Fourier Expansion is reduction of a function into irreducible 
components

Direct Product Representation: T (m⇥n)(✓) = T (m)(✓)T (n)(✓) = T (m+n)(✓)



R3 : Characters,Orthogonality, Reduction
Characters corresponding to the different irreps of R3:


Rotations by the same angle about any axis are in the same conjugacy class and hence have the 
same character. So the character can only depend on the angle of rotation and not on the axis of 
rotation. Use this flexibility to choose rotations about z axis to calculate the character
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We have seen before that (2j+1) dim irreps of R3 are labelled by j=0,1/2,1,... and the (2j+1) 
irreps of R2 ( m=-j to m=+j) form a basis set in this invariant subspace. So

Irrep of R3 Irreps of R2

D(j)(✓) = �m=j
m=�jT

(m)(✓) Reduction on restriction to subgroup



R3 : Characters,Orthogonality, Reduction

Examples : 

D(j1⇥j2) = �2j2
i=0D

(j1�j2+i)

D(1⇥3/2) = D(1/2) �D(3/2) �D(5/2)D(1/2⇥1/2) = D(0) �D(1)

=
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2 sin
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= �(j1+j2)(✓) + �(j1�1/2)(✓)�(j2�1/2)(✓)

= �(j1+j2)(✓) + �(j1+j2�1)(✓) + . . . + �(j1�j2)(✓) Assume j1 >= j2



Addition of Angular momenta 
Example: Spin-Orbit Coupling in electrons

Need Relativistic QM to treat this properly !!

Electrons have spin (magnetic dipole moment)  ~µB = � e

mc
~S
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·
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Overestimates

co-eff by 2.

~E = �rVc(r)Semi Classical

 Picture:

 Electrons move in the Electric field due to the nucleus

~B = �~v

c
⇥ ~EMoving charge in E field ---> Magnetic Field

Hyperfine Coupling between nuclei and electronsExample:

H ⇠ �hf
~I · (~L+ ~S) = �hf

~I · ~J

Generically, particles with spin can have spin-spin interactions of the above form

Nuclei have spin : so nuclear spins can couple to the electronic orbital angular momentum


                      the magnetic dipole moment of electrons create a magnetic field at the  

                      nuclear core, which couples to the nuclear spin



Addition of Angular momenta 

[Li, Sj ] = 0[Si, Sj ] = i"ijkSk

Consider a Hamiltonian which is rotationally invariant in L and S subspaces individually.

 L2, S2, Lz, Sz provide good quantum numbers for the system.

|j1,m1; j2,m2i = |j1, j2;m1,m2iSimultaneous eigenstates of L2, S2, Lz, Sz

L2|j1, j2;m1,m2i = j1(j1 + 1)|j1, j2;m1,m2i S2|j1, j2;m1,m2i = j2(j2 + 1)|j1, j2;m1,m2i

Lz|j1, j2;m1,m2i = m1|j1, j2;m1,m2i Sz|j1, j2;m1,m2i = m2|j1, j2;m1,m2i

~J = ~L+ ~S = ~L⌦ 1 + 1⌦ ~S

Infinitesimal rotation affecting both subspaces:

= [1� i ~J · n̂�✓]

J denotes total 

angular momentum. 



Addition of Angular momenta 

We should work with simultaneous eigenstates of L2, S2, Jz, J2 |j1, j2; j,mi

Now add a L.S term to this Hamiltonian

So L2 and S2 are conserved quantities and provide good quantum numbers

It is obvious that Lz and Sz are no longer conserved.

but Jz=Lz+Sz is conserved.

Similarly

However, we may be interested in expectations/ matrix elements of only the orbital or 

only the spin degrees of freedom. These are easy to evaluate in |j1,j2; m1,m2> basis

Need to find the transformation between the bases

[J2, L2] = 0 [J2, S2] = 0Finally So J2 is conserved.

Define  Jx=Lx+Sx and Jy=Ly+Sy , Then define J2=JiJi



Basis Transformation
|j1, j2;m1,m2i ⇠ �(j1)

m1
�(j2)
m2

transforms according to  m1m2 row of D(j1⇥j2)

The reduction of          into irreps of rotation group (j,m basis) gives us required transformationD(j1⇥j2)

D(j1⇥j2) = �2j2
i=0D

(j1�j2+i) Irreps j1+j2, j1+j2-1, j1+j2-2, … | j1-j2 |, each occur once

 in the reduction
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|j1, j2; j,mi =
X

m1m2

C(j1, j2, j;m1,m2,m)|j1, j2;m1,m2i

Clebsch Gordan Coefficients
Properties of a group

C(j1, j2, j;m1,m2,m) = 0 unless |j1-j2| < j < j1+j2

From reduction of the direct product representation



|j1, j2; j,mi =
X

m1m2

C(j1, j2, j;m1,m2,m)|j1, j2;m1,m2i

Clebsch Gordan Co-efficients

J±|j1, j2; j,mi =
X

m1m2

C(j1, j2, j;m1,m2,m)|(L± + S±)|j1, j2;m1,m2i

Jz � Lz � Sz|j1, j2; j,mi = 0 ) C(j1, j2, j;m1,m2,m)(m�m1 �m2) = 0

C(j1, j2, j;m1,m2,m) = 0 unless m=m1+m2 and |j1-j2| < j < |j1+j2|

Now,



Clebsch Gordan Co-efficients

Recursion Relations for Clebsch Gordan co-eff.

Take inner prod. with <j1,j2; l1,l2| and remember the defn. of CG co-eff.

| j, m> states j=3/2 :: | 3/2, 3/2>, | 3/2, 1/2>,

         | 3/2, -1/2>, | 3/2, -3/2>

j=1/2 :: | 1/2, 1/2>, | 1/2, -1/2>

| m1, m2> states
 | 1, 1/2>, | 0, 1/2>, | -1, 1/2>,

 | 1, -1/2>, | 0, -1/2>, | -1, -1/2>



Clebsch Gordan Co-efficients
  | 3/2, 3/2>= |1, 1/2>,         | 3/2, -3/2>= |-1, -1/2>

  | 3/2, 1/2>= C(1,1/2,3/2; 1,-1/2,1/2) |1, -1/2> + C(1,1/2,3/2; 0,1/2,1/2) |0, 1/2> 

  | 3/2, -1/2>= C(1,1/2,3/2; -1,1/2,-1/2) |-1, 1/2> + C(1,1/2,3/2; 0,-1/2,-1/2) |0, -1/2> 

  | 1/2, 1/2>= C(1,1/2,1/2; 1,-1/2,1/2) |1, -1/2> + C(1,1/2,1/2; 0,1/2,1/2) |0, 1/2> 

  | 1/2, -1/2>= C(1,1/2,1/2; -1,1/2,-1/2) |-1, 1/2> + C(1,1/2,1/2; 0,-1/2,-1/2) |0, -1/2> 



Spin-Orbit coupling and fine structure

l=1, 3 X 2=6 states

p- level

j=3/2,  4 states 

j=1/2,  2 states 

�ESO = (1/2)h↵(r)i[j(j + 1)� l(l + 1)� s(s+ 1)]

j1=1, j2=1/2 j=3/2, 1/2

l=2, 5 X 2=10 states

d- level

j=5/2,  6 states 

j=3/2,  4 states 

�ESO = (1/2)h↵(r)i[j(j + 1)� l(l + 1)� s(s+ 1)]

j1=2, j2=1/2 j=5/2, 3/2



Two spin 1/2 : Singlet and Triplet states

Two spin 1/2 particles interacting with a spin-spin interaction

H = �J ~S1 · ~S2
Ferromagnets are governed by such terms coming from Coulomb 
interaction

|1/2, 1/2i, |1/2,�1/2i, |� 1/2, 1/2i, |� 1/2,�1/2i|j1, j2;m1,m2i

Eigenstates :    j=1 (1/2+1/2)     and                   j=0 (1/2-1/2) 

m= 1, 0, -1 m= 0

1p
2
(|1/2,�1/2i+ |� 1/2, 1/2i)|1/2, 1/2i |� 1/2,�1/2i

Triplet States

1p
2
(|1/2,�1/2i � |� 1/2, 1/2i)

Singlet States

Use Clebsch Gordon to calculate this



Scalars, Vectors and Tensors
Notion of scalar, vector, tensor quantities based on their transformation under rotation:

R(x) = xScalar is invariant under rotation

Example: distance between points

R(~x) = R̂~x ) R(xi) = x

0

i = Rijxj

A Vector has same transformation properties as Cartesian co-ordinates 

Example: position, momentum, etc.

R(xijk..n) = x

0

ijk. . . n = Rii0Rjj0Rkk0
. . . Rnn0

xi0 j0k0 . . . n0

Cartesian Tensor of Rank n has same transformation properties as that of product of n co-ord.

Example (Rank 2): stress, conductivity, quadrupole moment, moment of inertia etc.  

                            Any Tij =ui vj, where ui and vj are components of vectors



Scalar, Vector and Tensor Operators
QM Equivalent of Rotation: Â ! D†ÂD D = e�i~L.n̂✓

Consider Infinitesimal rotation about j axis: D†ÂD = (1 + iLj✓)Â(1� iLj✓) = Â+ i✓[Lj , Â]

Scalar Operator : D†ÂD = Â Invariant under rotation

So a scalar operator commutes with 

all the angular momentum operators[Lj , Â] = 0For Scalar Operator

3 D: For infinitesimal rotation about j axis, ~r0 = ~r + ĵ ⇥ ~r✓ ) Âi ! Âi + "ijkÂk✓

Example:  position, momentum, orbital ang. momentum, spin, dipole moment etc.

Vector Operator:  A set D operators in D dim which transform according to  D†ÂiD = RijÂj

D†ÂiD = (1 + iLj✓)Âi(1� iLj✓) = Âi � i✓[Âi, Lj ]But,

So, for vector Operators [Âi, Lj ] = i"ijkÂk



Irreducible Set of Operators

Irreducible Set of Operators : A set of operators, which transform among themselves as

S(↵)0

i ⌘ T (Ga)S
(↵)
i T (G�1

a ) =
X

j

T (↵)
ji (Ga)S

(↵)
j

are called irreducible operators 

transforming according to T (↵)

• Scalar operators transform according to the 1 dim. j=0 irrep of the rotation group


• Vector operators transform according to the 3 dim. j=1 irrep of the rotation group.

• Spinor operators transform according to the 2 dim. j=1/2 irrep of rotation group

What about Tensor Operators?



Reduction of Cartesian Tensors
Reducibility of Cartesian Tensors:
Consider the cartesian Tensor Tij = UiVj ~U, ~V being vectors

Since Ui and Vj transform according to j=1 irrep


UiVj transform according to  
D(1⇥1) = D(0) �D(1) �D(2)

So generic Cartesian tensors are reducible

UiVj =
1

3
~U · ~V �ij +

(UiVj � UjVi)

2
+

 
(UiVj + UjVi)

2
�

~U · ~V
3

�ij

!

Reduction of UiVj :

Scalar (j=0)

1 dim

Vector (j=1)

3 dim

Traceless symmetric 

Tensor (j=2)  5 dim

Reduction of LiLj :

Scalar (j=0)

1 dim

Vector (j=1)

3 dim

Traceless symmetric 

Tensor (j=2)  5 dim

Same criterion holds for QM operators

Example : Quadrupole moment operator                        is irreducible set corr. to j=2Qij ⇠ rirj �
r2

3
�ij



Irreducibile Rank k Tensor Operators: Spherical Tensors
A set of 2k+1 irreducible operators which transform according to k irrep of rotation group 
are called spherical tensors of rank k if

DT (k)
q D† =

X

q0

D(k)
q0qT

(k)
q0

[L±, T (k)
q ] = ±

p
(k ⌥ q)(k ± q + 1)T (k)

q±1[Lz, T
(k)
q ] = qT (k)

q

We are using irreps of rotation group and the |j,m> basis to define spherical tensors 

Eigenfunctions corresponding to |j,m> basis are the Spherical Harmonics, 

so the idea is to take linear combinations of xixjxl…. corresponding to Ylm.

The same linear combinations of symmetrized uivjwl…. gives the spherical tensor operators.

Example with pipj: Y20 = N( 3 z2/r2 -1)  —> N (3 pz2-p2)

Y2-2 = N √(3/2) (x-iy)2/r2  —> N √(3/2) (px-ipy)2 Y22 = N √(3/2) (x+iy)2/r2  —> N √(3/2) (px+ipy)2

Y2-1 = N √6 (x-iy)z/r2  —> N √6 (px-ipy)pz Y21 = N √6 (x+iy)z/r2  —> N √6 (px+ipy)pz


