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Recap of Last Class
•Irreps of Lie Groups and Orthogonality


•Characters, Orthogonality and Reduction for Rotation Group


•Addition of Angular Momentum: Spin-Orbit coupling, Hyperfine coupling


• Different Basis and Basis Transformation: Clebsch Gordan Co-efficients 


•Irreducible set of Operators : Scalar  & Vector Operators


• Cartesian Tensors and their reduction: Spherical Tensors




Matrix Elements and Selection Rules
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(↵)
i |�(�)

j iÔ
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Example:  Dipole Selection Rules

The dipole moment is a vector operator which transforms according to j=1 irrep


Considering |n,l,m> atomic states, the dipole operator connects states with ∆l =0 or 1 or -1 only. 

l=0 to l=0 transition is forbidden.


The dipole operator connects states with ∆m =0 or 1 or -1 only


Example:   Selection Rules for spherical tensors
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Wigner-Eckart Theorem:

Specifically Indep. of i,j,k

Wigner-Eckart Theorem:



Example: Wigner Eckart Theorem
Consider a set of vector operators ri, pi, di, Vi  etc

True for any set of vector operators

This implies very useful in calculating

ratios of matrix Elements

Used (within FGR) to calculate ratio of intensity of different transitions


Used to calculate branching ratios for different decay processes.

Concrete Example: Calculation of dipole moment in spin-orbit coupled states

Method #1: Write the state in terms of Ylm s using Clebsch Gordon coeff.

               Work out integrals involving r in each of these states

Method #2: Use total matrix elements of total angular momentum operator

                How to get the prop constant? —— HW



Proper and Improper Rotations
Define a set of transformations of the Cartesian co-ordinates which keeps invariant.

So, RTR=1, i.e. transformations correspond to group of 3 dimensional Orthogonal matrices O(3)

It is obvious that [Det R]2=1,  so   [Det R]=±1

Rotations are continuously connected to the identity matrix and hence correspond to [Det R]=1 

Corresponding group : SO(3)

What about the set of orthogonal R with [Det R]= -1 ?

They do not form a group by themselves, but together with rotn. forms the O(3) group

Corresponding transformations are called improper rotations. Product of a “proper” rotation 

and spatial inversion 



Inversion and Pseudovectors
Scalar Operator : D†ÂD = Â Invariant under rotation

Vector Operator:  A set D operators in D dim which transform according to  D†ÂiD = RijÂj

Let us now include spatial inversion (parity) transformations into the mix.

Vector Operator: The vector operators change sign under inversion. e.g 

but does not change sign under inversion
Pseudovector Operator:  A set D operators in D dim which transform according to  

D†ÂiD = RijÂj

E.g.: Angular Momentum L, Spin S etc

Scalar Operator : Invariant under both rotation and inversion

Pseudoscalar Operator : Invariant under rotation but changes sign under inversion

E.g.: p.S etc



Back to vibrations of NH3
To take out contribution of the modes corresponding to translation and rotation of center of 

mass to the characters in our 12 D representation we used

Character contribution of the translation and rotation modes:

For translation modes, �t(S✓) = (2 cos ✓ � 1)

�t(R✓) = (2 cos ✓ + 1)

For rotation modes, �r(R✓) = (2 cos ✓ + 1)

�r(S✓) = �(2 cos ✓ � 1)

Components of translation of C.O.M. form a set of vector operators.

So under (proper and improper) rotation, it transforms in a way similar to any 3-coord. This

explains the character contribution of translation modes.

A Rotation, under a proper rotation transforms in the same way as translation modes.


But under inversion, it gets additional - sign (wrt vectors), To see this, note that infinitesimal 

rotations correspond to cross product n X r, which is a pseudovector.



U(1) Symmetry Already encountered in the form of 2D rotations R2

Group Combination Rule: ✓c = ✓a + ✓b ⇢(✓) = 1 V =

Z 2⇡

0
d✓ = 2⇡

Abelian Group --> 1D irreps
T (a)T (b) = T (a+ b) ) T (a)T
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0
(0) = im m = 0,±1,±2... T (✓) = eim✓Single Valued 


Representation

 (r, ✓) =
X

m

 m(r)eim✓The Fourier Expansion is reduction of a function into irreducible 
components

Direct Product Representation: T (m⇥n)(✓) = T (m)(✓)T (n)(✓) = T (m+n)(✓)

(x,y)  ——> u=(x+ iy) Rz (θ) [(x,y)] = (x cosθ+y sinθ, -x sinθ+y cosθ)

Rz (θ) [u] = u e-iθ —————> U(1)



1D SHO and U(1)

Classical Phase Trajectories corresponding to fixed E : circle ———> R2 ———> U(1)

(x,y)  ——> u=(x+ iy) (y,k)  ——> u=(y+ ik)

QM Equivalent:

U(1) Transformation: 

H is invariant under this, so the system has U(1) symmetry

Rotation (phase shift) operator: e�ia†a✓

a† ! eia
†a✓a†e�ia†a✓ = a†ei✓

Eigenstates labeled by integer valued eigenvalues of a†a

|ni ⇠ (a†)n|0i |ni ! ein✓|ni



U(1) Gauge Transformations and EM
Consider a system with the following symmetry:  The observables are unchanged under a space-
time dependent phase rotation of the wavefunction [ U(1) gauge symmetry]
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U(1) Gauge Transformations and EM

Consider now a system which already has charged particle interacting with EM field
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 simply leads to an equation of motion of the form 

A Gauge transformation of the form
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SU(2) and its generators
Arbitrary 2D Unitary Matrix              , where H is a Hermitian matrix (4 real numbers).

with Det[U]=1, which means H is traceless. Hence 3 indep. parameters

Û = eiĤ

3 parameter Non-Abelian Lie Group
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is the identity

Pauli Matrices provide a set of generators, so the Lie Algebra is

The Lie Algebra is same as that of rotation group [R3 or SO(3)]. In fact everything about 

irreps, basis fn.s etc which can be obtained from the Lie Algebra can be translated.

In SU(2) the angle of rotation a goes from 0 to 4𝜋, while angle of rotation goes from 0 to 2𝜋 for SO(3)

2 rotations in SU(2) by θ and θ+2𝜋, correspond to the same rotation by θ for SO(3). 

                                     This is a 2 to 1 map.



2D Harmonic Oscillator
H =

p21 + p22
2m

+
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1 and 2 denote indep. Harmonic oscillators. Eigenstates are labelled by occupancy of 1&2 modes

E(n1, n2) = ~!0[n1 + n2 + 1]

Note the N+1 fold degeneracy (N=n1+n2).

N=1 ---- (1,0) and (0,1) ,      N=2 ----  (2,0), (1,1),(0,2)       N=3 ---- (3,0),(2,1),(1,2),(0,3)

Symmetries :  Inversion, 2D rotation, U(1) X U(1) ..... Abelian symmetries. No degeneracy expected.

This is either “accidental” or due to some symmetry we have not thought about



2D SHO and SU(2)

The symmetry corresponds to arbitrary rotations in the 2D complex vector space (upto a phase) 
spanned by this two states. This is simply the symmetry group SU(2).

Consider N=1 sector (1,0) and (0,1). 

Any 2 orthogonal linear combination of (1,0) and (0,1) can be used as eigenstates. The physics 

should be independent of this choice.

Degenerate states for generic N : (N,0), (N-1,1) … (0,N)            2N+1 fold degeneracy

Work with new variables {n1,n2}  -----> {(n1+n2)/2, (n1-n2)/2}

[(N,0), (N-1,1), .....(0,N)] ------->  [(N/2,N/2),(N/2,N/2-1), ...(N/2,-N/2)] 

Looks like angular momentum eigenstates with (n1+n2)/2  --> j and  (n1-n2)/2  --->  m

1

2
(a†1a1 � a†2a2) ! Lz a†1a2 ! L+ a†2a1 ! L�

These operators obey the standard angular momentum commutation relations

Check Explicitly !!



Schwinger Bosons
Note that the 2D nature of the system is not imp. (only need 2 indep. Harmonic Oscillator)
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†
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Schwinger Bosons

All of rotation and angular momentum can be worked out if you know Harmonic Oscillators
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Symmetry Breaking and Splitting of degeneracy
We have till now considered the consequences of symmetry on various aspects of QM problems


Symmetries, however correspond to non-observables. It is often by breaking symmetry and 
studying the consequences (when we can) that we ascertain aspects of symmetry.


E.g.: Symmetries lead to degeneracies. However, it is hard to experimentally determine how many 
degenerate states one is looking at. Usually spectroscopic methods tell us the energy levels, but 
unless it is a simple enough problem where we know various matrix elements exactly, it is hard to 
predict how many states one is looking at.


By breaking symmetries in specific ways, we can split the degenerate levels. The specific manner of 
splitting of the degenerate levels give us a handle over various aspects of both the symmetric and 
symmetry broken system.

Splitting of degeneracies as seen in typical spectroscopic data

Broken 
Symmetry



Fine Structure of Atomic Levels (H Atom)
The Coulomb problem has a large symmetry group [ O(4) for the spatial part]

Energy Levels  En ~ 1/n2

• Each n level has n fold l degeneracy of l=0,1,..n-1 (Coulomb special, nothing to do with rotn.)


• Each l level is 2l+1 fold degenerate (m states) due to rotational symmetry.

• In addition there is 2 fold degeneracy due to rotational symmetry in spin 1/2 space

Total Degeneracy 2n2

1s : n=1,l=0 :  2 spin states

2s,2p : n=2,l=0,1 :  8 states

3s,3p,3d : n=3,l=0,12 :  18 states

Hydrogen Atom

Lyman α line

Balmer α line

1s1/2 : n=1, j=1/2 :  2 states

2s1/2, 2p1/2 : n=2, j=1/2 :  4 states

2p3/2 : n=2, j=3/2 :  4 states

3s1/2, 3p1/2, : n=3, j=1/2 :  4 states

3p3/2, 3d3/2 : n=3, j=3/2 :  8 states

 3d5/2 : n=3, j=5/2 :  6 states

SO Coupling

Lyman α doublet

In Hydrogen, the 2s1/2 and 2p1/2 states are split due to interaction with vacuum polarization of 
QED. This shift, called Lamb shift, was calculated to a very high precision using QFT



In multi-electron atoms, the outer electrons “see” the nuclear charge through a fog of charges 
due to inner electrons. This results in an effectively screened interaction                    .

This splits the different l levels. We have 2(2l+1) fold degenerate states due to rotation symmetry.

Fine Structure of Atomic Levels (Beyond H atom)

1s : n=1,l=0 :  2 spin states

2s : n=2,l=0 :  2 states

2p : n=2,l=1 :  6 states

3s : n=3,l=0 :  2 states

3p : n=2,l=1 :  6 states

3d : n=2,l=2 :  10 states

1s : n=1,j=1/2 :  2 spin states

2s : n=2,j=1/2 :  2 states

2p : n=2,j=1/2 :  2 states
2p : n=2,j=3/2 :  4 states

3s : n=3,j=1/2 :  2 states

3p : n=3,j=3/2 :  4 states
3p : n=3,j=1/2 :  2 states

3d : n=3,j=5/2 :  6 states
3d : n=3,j=3/2 :  4 states

Hyperfine splitting


