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Systems with Many Particles

QM of 2 particles e.g.: Scattering.      Reduced to an effective 1-particle problem by going 

                                               to COM and relative co-ordinates.

Most systems around us consist of many particles: 

Jar of hydrogen gas,    Electrons in a metal,    Multi-electron Atoms,     Nuclear matter

QM of one particle e.g.:  Harmonic oscillator, single hydrogen atom etc.

Liquid Helium can flow without viscosity

The collapse of supernovae are arrested by Fermi pressure

Electrons in a metal can become superconducting

Many body quantum systems show interesting quantum effects: 

Many Particle systems can be in states 

that spontaneously break the symmetry 


of the underlying Hamiltonian 

The whole is more than the sum of its parts



The Many-Particle Hilbert Space

|↵i = |k1i1 ⌦ |k2i2 ⌦ |k3i3....⌦ |kN iNExample with momentum basis states:

Particle 1 has momentum k1, particle 2 has momentum k2

....... particle N has momentum kN

Description of a system of  N particles in CM: {q,p} ———>  {qi,pi} (a point in 6N dim. phase space).

1 particle QM: use |q> or |p> eigenstates as a basis to expand arbitrary states. 

Naive guess: A Tensor product of Hilbert space for each particle

Let         denote a complete set of basis states for the ith particle.   {|↵ii}

|↵i = |↵i1 ⌦ |↵i2 ⌦ |↵i3....⌦ |↵iN can be used as a basis set

Many Particle QM

Example with position basis states:

Particle 1 is at q1, particle 2 is at q2 ....... particle N is at qN



The Many-Particle Hilbert Space

OK if we are dealing with distinguishable particles

e.g. A three particle system of an electron, a proton, and a neutron (Deuterium).

If we are trying to describe a system of many identical indistinguishable particles the Hilbert

space spanned by the above basis states admits unphysical quantum many-body states.


To see this : and are distinct states

Let         denote a complete set of basis states for the ith particle.   {|↵ii}

|↵i = |↵i1 ⌦ |↵i2 ⌦ |↵i3....⌦ |↵iN can be used as a basis set

• But if the particles are indistinguishable, the numbering 1,2,..N is superfluous

• We can only talk about a particle each at x,y,z, not about 1st particle at x….

• So |α> and |β> should be the same state (upto a phase)

• Using the tensor product basis thus overcounts the states



Identical particles and Hilbert Space
In QM, we have to fix amplitudes while adding equivalent states. No analogue in classical probability

Example with 2 particles and 2 single particle states,  |α>  and |β> |↵i|�i ei�|�i|↵i

Need to figure out transf. of states under permutation of particles

P12|↵i1|�i2 = ei�|�i1|↵i2 P 2
12|↵i1|�i2 = ei2�|↵i1|�i2

S2:  Permutation group of 2 objects (here the particles). This group has 2 1d irreps given by {1,-1}. 


The particles whose states transform according to {+1} are called Bosons and particles whose 
states transform according to {-1} are called Fermions

For Bosons:
1p
2
[|↵i1|�i2 + |�i1|↵i2]

1p
2
[|↵i1|�i2 � |�i1|↵i2]For Fermions:

give valid states. However, arbitrary superpositions of tensor product states are not allowed

Since P122= I

ei2� = 1 ) ei� = ±1



Spin and Exchange Statistics

Spin statistics theorem:  Particles with half-integer spins behave like Fermions and those with   

                              integer spins behave like Bosons. The correlation between spin and 

                              statistics comes from relativistic field theories. 

Some Consequences of Exchange Symmetry

•The relative angular momentum of a spin 0 particle about another identical one is even

•Two fermions cannot occupy the same quantum state : Forms the basis for atomic structure,
   band theory etc. 

•For 2 electrons, the spin triplet state needs to be spatially antisymmetric (odd angular mom.)
  while the singlet state needs to be spatially symmetric ( even angular mom)

•Bosons can all occupy the lowest energy single-particle state: Bose Einstein Condensation 



3 Identical Particles
Permutations of 3 objects : S3

A

B C

R2

R1

R1: A —> B, B —> C, C —> A 

R2: A —> C, B —> A, C —> B 

A

BC R3

R5

R4

R3: A —> A, B —> C, C —> B 

R4: A —> B, B —> A, C —> C 

R5: A —> C, B —> B, C —> A 

S3 is isomorphic to D3

{E} {R1,R2} {R3,R4,R5}

T(1) 1 1 1

T(2) 1 1 -1

T(3) 2 -1 0

S3 is non-Abelian and has a 2d irrep

However, in nature we only get particles transforming acc. to T(1) and T(2)

 T(1)  is the identity irrep. and corresponds to Bosons



3 Identical Particles
Permutations of 3 objects : S3

A

B C

R2

R1

R1: A —> B, B —> C, C —> A 

R2: A <—> C, then B <—> A

A

BC R3

R5

R4

R3: A —> A, B —> C, C —> B 

S3 is isomorphic to D3

{E} {R1,R2} {R3,R4,R5}

T(1) 1 1 1

T(2) 1 1 -1

T(3) 2 -1 0
R4: A <—> B 

R5: A <—> C

R3:  B <—> C 

R1: A <—> B, then B <—> C

 T(2)  is the sign irrep. and corresponds to Fermions

Any permutation can be built up by many permutations of 2 objects at a time

For each such 2-perm put a - sign and keep multiplying the - signs. The ±1 that results is 

called the sign of the permutation.



Let us now generalize the formalism to N particles

1,2,3..... N —> ∞

We want to write down a state where there are particles in the single particle states 

|α1 >, |α2 >, |α3 >,…. |αN >

| Bi =
1p
N !

X

PN

PN [|↵1i ⇥ |↵2i....⇥ |↵N i]For Bosons:

| i = |↵1i ⇥ |↵2i....⇥ |↵N iStart with

Take all permutations (PN) of the particle no. index and add the states and normalize.

State symmetric under exchange of any 2 particles.

| F i =
1p
N !

X

PN

(�1)PNPN [|↵1i ⇥ |↵2i....⇥ |↵N i]For Fermions:

| i = |↵1i ⇥ |↵2i....⇥ |↵N iStart with

Take all permutations (PN) of the particle no. index and add the states with the sign of the 

permutation used to obtain it. Normalize.

State antisymmetric under exchange of any 2 particles.



1,2,3..... N —> ∞

| B(F )i =
1p
N !

X

PN

(⇣)PNPN [|↵1i ⇥ |↵2i....⇥ |↵N i]Combined Notation:

⇣ = ±1 for Bosons(Fermions)

Actual N particle Hilbert space is a subspace of the tensor product space

HN = H⌦H⌦ ....⌦H Single Particle

 Hilbert Space

Need to Project onto the subspace of states 

which are completely (anti) symmetric w.r.t.

exchange of particles to get the Hilbert space 

for N identical Bosons (Fermions)

BN

FN

Note: different normalization to make

 P a projection operator , P2=P

BN = PBHN FN = PFHN

PB(F )|↵1i ⇥ |↵2i....⇥ |↵N i = 1

N !

X

PN

(⇣)PNPN [|↵1i ⇥ |↵2i....⇥ |↵N i]

|↵1,↵2, ...↵N} =
p
N !PB(F )|↵1, ...↵ni

If             is a complete basis set in     ,                    is a complete basis set in   |↵1, ...↵ni HN |↵1,↵2, ...↵N} BN (FN )



Wavefunctions for Identical particles: 1,2,3..... ∞

Using co-ord. basis for β and some single particle basis for α (say HO states) ,the wfn

 

{↵i}(x1, ....xN ) =
1p

N !
Q

↵ n↵!
S[�↵i(xj)]

For Fermions, the Determinants are 

called Slater Determinants

We have constructed a basis set in the appropriate (anti)symmetric subspace of states

We can work with the tensor product basis and put the (anti)symmetry constraints on 

expansion co-efficients (wavefn.s)

Wavefunctions, Permanents and Determinants:

h�1, ...�N |↵1, ...↵N ) =
1p

N !
Q

↵ n↵!
S(h�i|↵ji) Mij = h�i|↵ji is a matrix

S(M) = Det(M)S(M) = Perm(M) for Bosons for Fermions

What is the wfn. of our (anti)symmetrized basis states in the original tensor product basis?



Wavefunctions for Identical Bosons and Fermions
Example with 3 Bosons and Harmonic oscillator states:  


A state where 1 boson occupies each of the states n=0,1,2 

 B(x1, x2, x3) =
1p
3!
Perm

0

@
�

0(x1) �

0(x2) �

0(x3)
�

1(x1) �

1(x2) �

1(x3)
�

2(x1) �

2(x2) �

2(x3)

1

A

 A state where 2 bosons occupies n=0, and the third one is in n=1

 B(x1, x2, x3) =
1p
3!2!

Perm

0

@
�

0(x1) �

0(x2) �

0(x3)
�

0(x1) �

0(x2) �

0(x3)
�

1(x1) �

1(x2) �

1(x3)

1

A

Example with 3 Fermions and Harmonic oscillator states:  


A state where 1 fermion occupies each of the states n=0,1,2 

 F (x1, x2, x3) =
1p
3!
Det

0

@
�

0(x1) �

0(x2) �

0(x3)
�

1(x1) �

1(x2) �

1(x3)
�

2(x1) �

2(x2) �

2(x3)

1

A

Is there a way around (some other basis), where the (anti)symmetrization is automatically 
taken care of and we do not have to deal with these cumbersome objects?



Fermions and Pauli Exclusion Principle

For Bosons, the list |α1 >, |α2 >, |α3 >,…. |αN > can have repetitions, i.e. same SP state can appear

many times. Many Bosons can occupy the same SP quantum state.

| B(F )i =
1p
N !

X

PN

(⇣)PNPN [|↵1i ⇥ |↵2i....⇥ |↵N i]

For Fermions, the list |α1 >, |α2 >, |α3 >,…. |αN > CANNOT have repetitions (due to antisymmetry)

2 Fermions cannot occupy the same SP quantum state —— Pauli Exclusion Principle

Fermions make atomic physics, chemistry and solid state physics so diverse



Atoms
The Basic Hamiltonian for electrons:

Coulomb pot. of nucleus Spin Orbit coupling e-e repulsion

Part of e-e interaction can be absorbed into an 

effective screened potential from the nucleus

Screened Coulomb pot. Spin Orbit coupling e-e repulsion

Hydrogen atom :  No e-e interaction, no screening

H =
X

i

p2i
2m

� Ze2
X

i

1

ri
+⇠

X

i

~Li · ~Si+

0X

ij

e2

|ri � rj |

H =
X

i

p2i
2m

�Ze2
X

i

1

ri
+
X

i

U(ri)+⇠
X

i

~Li · ~Si+

0X

ij

e2

|ri � rj |
�

X

ij

U(ri)�ij



Fine Structure of Atomic Levels (H Atom)
The Coulomb problem has a large symmetry group [ O(4) for the spatial part]

Energy Levels  En ~ 1/n2

• Each n level has n fold l degeneracy of l=0,1,..n-1 (Coulomb special, nothing to do with rotn.)


• Each l level is 2l+1 fold degenerate (m states) due to rotational symmetry.

• In addition there is 2 fold degeneracy due to rotational symmetry in spin 1/2 space

Total Degeneracy 2n2

1s : n=1,l=0 :  2 spin states

2s,2p : n=2,l=0,1 :  8 states

3s,3p,3d : n=3,l=0,12 :  18 states

Hydrogen Atom

Lyman α line

Balmer α line

1s1/2 : n=1, j=1/2 :  2 states

2s1/2, 2p1/2 : n=2, j=1/2 :  4 states

2p3/2 : n=2, j=3/2 :  4 states

3s1/2, 3p1/2, : n=3, j=1/2 :  4 states

3p3/2, 3d3/2 : n=3, j=3/2 :  8 states

 3d5/2 : n=3, j=5/2 :  6 states

SO Coupling

Lyman α doublet

In Hydrogen, the 2s1/2 and 2p1/2 states are split due to interaction with vacuum polarization of 
QED. This shift, called Lamb shift, was calculated to a very high precision using QFT



Multi-Electron Atoms

Start with screened Coulomb potential : degeneracy of l levels are lifted

Stable electronic shells corresponding to filled orbitals.

(n,l) levels are filled according to Pauli exclusion principle starting from lowest one

What happens to atoms which have partially filled levels?       Think about electrons in the partially        

                                                                            filled level only

1s2 2s2 2p2

n= 1, l=0 level will have 2 e with spin ↑ and ↓Consider Carbon atom: 6 electrons

n= 2, l=0 level will have 2 e with spin ↑ and ↓

n= 2, l=1 level will have 2 e

Which l orbitals would be occupied and what is the spin config of the 2p electrons?

Each electron can occupy 3 X 2 =6 states, so there are 36 states in all

H =
X

i

p2i
2m

�Ze2
X

i

1

ri
+
X

i

U(ri)+⇠
X

i

~Li · ~Si+

0X

ij

e2

|ri � rj |
�

X

ij

U(ri)�ij



Multi-Electron Atoms

Start with screened Coulomb potential : degeneracy of l levels are lifted

Stable electronic shells corresponding to filled orbitals.

(n,l) levels are filled according to Pauli exclusion principle starting from lowest one

What happens to atoms which have partially filled levels?       Think about electrons in the partially        

                                                                            filled level only

1s2 2s2 2p2

n= 1, l=0 level will have 2 e with spin ↑ and ↓Consider Carbon atom: 6 electrons

n= 2, l=0 level will have 2 e with spin ↑ and ↓

n= 2, l=1 level will have 2 e

Which l orbitals would be occupied and what is the spin config of the 2p electrons?

Each electron can occupy 3 X 2 =6 states, so there are 36 states in all

H =
X

i

p2i
2m

�Ze2
X

i

1

ri
+
X

i

U(ri)+⇠
X

i

~Li · ~Si+

0X

ij

e2

|ri � rj |
�

X

ij

U(ri)�ij



The Case of Carbon
The wavefunction of two non-interacting atoms occupying state m and n (given by both Lz and Sz)

The Slater determinant implies that there are actually 15 states consistent with Fermi statistics

You simply choose 2 out of the 6 states, making sure that they are different.

What are the quantum numbers of these 15 states?

Symmetric under exchange Anti-symmetric under exchange

If SO coupling is neglected, spin and orbital part can be treated separately

1p
2
(|1/2,�1/2i+ |� 1/2, 1/2i)|1/2, 1/2i |� 1/2,�1/2i

Triplet States

1p
2
(|1/2,�1/2i � |� 1/2, 1/2i)

Singlet States

Spin states of 2 spin 1/2 particles :  S = S1 + S2



The Case of Carbon
Orbital states of 2 l=1 particles L=L1+L2 (Eigenstates of total angular momentum)

L=2, 1, 0 states Consider L=L1+L2, where L1 and L2 transform according to the l irrep

States with L=2l are symmetric under exchange of 2 particles

|j,m> |m1,m2>

is symmetric under 1 ⇄2 

|j= 2l, m> is obtained from |j=2l,m=2l> by acting with    L- = L1- + L2-

Since L- is symmetric under 1 ⇄2,   |j= 2l, m> is symmetric under 1 ⇄2 

States with L=2l-1 are anti symmetric under exchange of 2 particles

Since <2l,2l-1| 2l-1,2l-1> =0,  a= -b ———>  

|j= 2l-1, m> is obtained from |j=2l-1,m=2l-1> by acting with    L- = L1- + L2- ———> Antisymmetric



The Case of Carbon
Similarly |2l-2,2l-2> can be written in terms of |l,l> and same orthogonality arguments 

show it to be symmetric under 1 ⇄2        

Thus 2l, 2l-2, 2l-4 etc are symmetric under exchange, while 2l-1, 2l-3 etc are antisymmetric

For half-integer valued l, 2l is odd, so odd irreps are symmetric while even irreps are antisymmetric

S=1 is symmetric, S=0 is antisymmetric

For integer valued l, 2l is even, so even irreps are symmetric while odd irreps are antisymmetric

L=2,0 is symmetric, L=1 is antisymmetric

Since the wavefn (orbital + spin part) needs to be antisymmetric, possible combinations are 

L=0 S=0 ——> 1s L=2 S=0 ——> 1d L=1 S=1 ——> 3p 2S+1L Spectroscopic terms

L=1 S=1 ——> 3p L=2 S=0 ——> 1dL=0 S=0 ——> 1s

5 states1 state9 states



The Case of Carbon: Spin Orbit Coupling

Splitting of the terms

L=2 S=0 ——> 1d
5 states

do not split

L=0 S=0 ——> 1s
1 state

 no splitting

L=1 S=1 ——> 3p
9 states

J=2        5 states

J=1       3 states

J=0         1 state



Effective active degree of freedom : L=1,S=1 object

The Case of Carbon: Hund’s Rule
Hund’s Rule: State with largest multiplicity (largest spin) makes atoms more stable (lower energy)

In Antisymmetric orbital wavefunctions, the probability of two electrons occupying  same pos. is 0

Electrons interact with repulsive Coulomb repulsion ~ 1/r. They can minimize this energy by staying 
as far apart, subject to other constraints (read other contribution to energy). So, anti-symmetric 

orbital wavefunctions and hence symmetric spin wfn.s are preferred. For 2 electrons S=1, L=1 would 
be preferred from Hund’s coupling 

L=1 S=1 ——> 3p
9 states

J=2        5 states

J=1       3 states

J=0         1 state
Filled

One of the three states filled



The Case of Nitrogen: 3 valence Electron
One can extend similar analysis to 3 valence electrons (N has 7 electrons  1s2 2s2 2p3)

The permutation symmetry group is S3

Note that the full wfn (spin + orbital part) should

transform according to T(a) , but the orbital and 

the spin parts can individually transform according 

to any irrep including T(m) which is a mixed irrep

 (neither symmetric nor antisymmetric)

{E} {R1,R2} {R3,R4,R5}

T(s) 1 1 1

T(a) 1 1 -1

T(m) 2 -1 0

S3 is non-Abelian and has a 2d irrep

T(a) occurs in the reduction of T(a) X T(s)

T(s) X T(a)

T(m) X T(m)

So, any of these are possibilities

Details to be worked out in HW

Note, in the last case the two irreps correspond to orbital and spin states, 

so no symmetrization is required



Time Reversal Symmetry

Can you tell me if the video is 

running forward or backward?

If you cannot the motion is

 time-reversal symmetric

More precisely, if the reversed motion

is a valid motion of the system, the

system has TR invariance

If you deduced the laws of motion 

from the forward and the reversed video,

would you get the same laws of motion?



TR for Classical Hamiltonian System

Under TR Note that this is not a canonical transformation

If Eqn. of motion is TR invariant

Eqn. of motion is TR invariantEg:

Eqn. of motion is not TR invariant

for fixed A. If you consider source

of A and apply TR transformation on

them as well, A will change sign and 

EOM will be TR invariant.

Problem:  A pendulum is given just enough velocity when it is in vertically 

            downward position, so that it comes to rest at the vertically 

           upward position. Find the time taken to reach this position.

If the time was finite, TR invariance would mean that the pendulum can start with 0 velocity 

in the upward position and come down. Do you think that is a valid motion?



TR for QM
Under TR Start with defn. from CM

QM equivalent:

Does not preserve Not a canonical transformation

TR is an anti-unitary operator (takes i to -i and solves above problem)

Complex conjugationUnitary Operator

TR is an anti-linear operator 

Action of TR on a state: Choose a basis and expand, apply cc to co-eff, then

                             apply unitary operator on the state.

Under TR, inner product of quantum states is not conserved



Representations of TR
TR looks like a Z2 symmetry, but is T2 =1?

One dimensional representation

QM: states are same upto a phase

𝛼 is a choice which can be used to get rid of θ. There is thus 1 1-d representation of T



Representations of TR
2D representation and spin 1/2

Spin, being angular momentum, should change sign under TR.

Use and

The matrix would do the job. It is the only matrix which will do it —— show !!

φ is arbitrary, choose φ=𝜋/2 to make U real

Projective representation —— upto a - sign ….. saw similar situation for the spin 1/2 representation

of rotation group.

Nature (Fermions) are not classical, get used to it !!



T2 = -1 and Kramer’s degeneracy
In a TR invariant system, if T2 = -1, all energy eigenstates must be doubly degenerate

It is clear that for a TR invariant system, if H|Ψ> = E|Ψ> , H T|Ψ> = E T|Ψ>

However, one needs to show that |Ψ> and T|Ψ> are different states for this 

to count as a degeneracy of eigenstates.

Assume that |Ψ> and T|Ψ> are the same state, i.e. 

Then

This contradicts our assumption that T2 = -1

So, for T2 = -1 and this proves Kramer’s degeneracy theorem

E.g.: True for :  single electron, odd no of electrons, odd no of Fermions in general 


