Parallel Conjugate Gradient

Sourendu Gupta, TIFR,
April 2002, HRI, Allahabad

. Motivation: lattice Fermion Monte Carlo

. Formal problem: solve Az = b

. T he conjugate gradient algorithm

. Convergence and preconditioning

. Parallelising the algorithm

. Architecture dependence

Relativistic Fermions

The Dirac equation is a set of four first or-
der differential equations which can be written
as—

Yu(Op — ieAp)Y(x) + my(x) =0

where m is the mass of the Fermion, A, are
gauge fields, 9,, denotes a first derivative with
respect to the coordinate x,. v is a four com-
ponent complex vector and ~, are 4 x4 matri-
ces which satisfy the conditions v,y + vy =

29/1’7’/'

I will work in Euclidean space-time, where g,y
is diagonal and all component are unity. I will
take the dimension of space-time to be d = 4.

I will work on a finite lattice and put either
periodic or anti-periodic boundary conditions
(PBC/ABQ).

+ 2

+ +

Free Relativistic Lattice Fermions

If the lattice spacing is a, then derivatives be-
come

0u(@) > [¥(@ +) — v(@)]

where z, is the unit vector in the direction pu.
I will choose length units such that a = 1.

At each point on the lattice there is a 4 com-
ponent complex vector. Now put these to-
gether into a really big vector

v = (@), Y1 +21),---,9(1 + N1Zy1),

(1 +), -, (1 + Noip),)T
The number of components is N =4 x Ny X
No X «--.

The Dirac equation is DWW = 0, where each
row of D has only 4(d+1) non-zero elements.
The diagonal elements are D(x,xz) = m — d.
The only non-zero off-diagonal elements are
D(z,z + z,) = 1. The matrix is sparse.

+ 3

+ +

Lattice Quantum Electrodynamics

The Monte Carlo procedure is meant to eval-
uate the integral

Z = /DU DetD exp[—S(U)].

I will take the example of U(1) gauge theory,
where each U = exp(ieA,) is a complex num-
ber of unit modulus placed on the links of the
lattice. This is a lattice version of quantum
electrodynamics. The Fermions are electrons
and their anti-particles, the positrons. The
operator

(Ou —ieAy) = Uz, zp)Y(x + zu) — ().

As a result, D has the same diagonal elements
as the free Fermions. But the non-zero off
diagonal elements are D(z,z+z,) = U(z,Z,).

We have neglected complications arising from
Fermion doubling.

+ 4

Fermion Monte Carlo

Now Z can be evaluated by a Metropolis al-
gorithm. The weight factor of each configu-
ration of U on the lattice is the integrand. To
find the weight, we evaluate the determinant
by the trick

vDetA = /DCD exp[—CDTA_le]a

where & are auxiliary Boson fields which are
usually called ‘pseudo-Fermion’ fields.

In practice, we use

DetDDt = /ch(DT)—lD—lcb.

In order to do this, we select a random vector
d and solve for X in

DX = &.

This is the core numerical problem we solve.

+ 5

The Conjugate Gradient
Algorithm

To solve the linear system Ax = b where A
is a Hermitean matrix, we use the following
algorithm:

. Choose x_0 and compute r_ 0 = b - Ax_O

. Compute p_0 = 0 and rho_{-2} =1

. for i =1,2,... do

rho_{i-1} = (r_i,r_1i)

beta_{i-1} = rho_{i-1} / rho_{i-2}
p_i = r_{i-1} + beta_{i-1} p_i

q_i = Ap_i

alpha_i = rho_{i-1}/(p_i,q_1i)

© 00 N O O b W N =

x_i = x_{i-1} + alpha_i p_i

-
o

r_i = r_{i-1} - alpha_i q_i

s
N =

Check convergence; continue?

. end

Algorithmic Complexity (1)

et the vectors have dimension N.
Every ulv requires O(N) operations.
Every Av requires O(N) operations.

Each iteration through the loop requires O(N)
operations.

Problem 1: Count the exact number of op-
erations in each iteration.

Problem 2: Count the exact number of op-
erations for Gauss elimination.

Linear system = quadratic
minimum

The quadratic form

f(x) = %ZUTAZE —zlb+e,

where A is a matrix, b a vector and ¢ a con-
stant, has an uniqgue minimum if all eigenval-
ues of A are positive. Finding the position of
the minimum is equivalent to solving

Az =0b

We will discuss iterative methods for finding
the minimum, i.e., methods of defining a se-
quence xqg, 1, T2, --- Which converge to the
minimum.

The vectors e; = x — x; are called the errors.

The vectors r;, = b— Ax; = Ae; are called the
residuals.

Usual stopping criteria on iterative methods
is to have |r;| <€, for some pre-fixed e.

+ 8

Steepest Descent

To solve the linear system Ax = b where A
iIs a Hermitean matrix, we use the following
algorithm:

Check convergence; continue?

1. Choose x_1

2. for 1 =1,2,... do

3. r_i=>b - Ax_i

4. alpha_i = (r_i,r_i)/(r_i,Ar_i)
5. x_{i+1} = x_i + alpha_i r_i

6.

4

. end

With f(y) being the quadratic form, f/(y) =
b— Ay = r. Hence the change in z; is always
along the direction of the gradient, i.e., along
the direction of maximum change.

In this direction (as in any other) the function
is parabolic, and the step is chosen to bring
us to the minimum of this parabola.

T he steps are repeated until we are sufficiently
close to the minimum.

+ 9

+ +

Convergence of steepest descent

et the eigenvalues of A be Ao and eigenvec-
tors be wvo,. Assume all the vectors are or-
thonormal.

If r; = > o r{*va, then

2
o Zar) e
Sada(rf)”
AsS a result,

1
Tid1 = (1 —;A)r; = Z [1 — o <X>] rivg.

«

The longest components of r; decrease at
each step, but some of the shorter compo-
nents can increase.

Problem 3: What is the convergence rate of
steepest descent?

+ 10

+ +

Search Directions and Conjugacy

In steepest descent, the successive search di-
rections (for minimisation) are the r;. The
successive r; are not orthogonal and therefore
an infinite number of steps may be necessary
for convergence.

If the search directions d; are conjugate, i.e.,
d,l-LAdj = 0 then we set dl-LAei_|_1 = 0. Now let
€i+1 = €; + o;d;. Then

o= dl-LAez- _ d;-rri |
’ dfiAd; diiAd;
Knowing the search directions, we can then

set up an iterative procedure. This converges
in N steps, as we now Show.

Let eg = >_j€;d;. Since the search directions
are conjugate

dT-Ae-

37
ej — T - — —ij.

dljAd;
Thus each step cuts out one component of
eg. Hence N steps suffice.

+ 11

Orthogonality of Residuals +
Conjugacy of Search Directions =
Conjugate Gradient

Since r; = Ae;, and d;fAez-_H = 0, therefore

dl-L’l“i_|_]_ = 0.

If we build the search direction from the suc-
cessive residuals, then, at step 2, they span
the space D; = {rg,r1,---,7—1}.- Since the
search direction d; € D;, the new residual is
orthogonal to all the old search directions.

Problem 4: In the steepest descent method
the residuals are the search directions, Prove
that these are orthogonal.

Problem 5: Prove that D; are Krylov spaces:

D,; = span{rg, Arg, A%rq,- -+, A" 1rg}.

Convergence of CG (1)

Since D; is a Krylov space, e; = P(A)eg, where
P(A) is some polynomial in A. If we write
€0 — ZO: €CaVa, then

€; — ZG@P()\@)U@, r; — ZeaAaP(Aa)/Ua.
(64 (87

The CG algorithm minimises the maximum
possible value of

lesl| = el Ae; = 3 €2XaP2(Aa).
(8

This minimax polynomial is known to be the
Tchebychev polynomial,

1) 7
Ti(z)=§[<z—|— 22—1) + (z— z2—1>].
It can be proved that

T;(n(M))

B = oy’

where

Amax +)‘min — 2A >\ma:r; +)\min

n(A) = , d(A) =

>\maa: — >\m7jn Amaw —)\min

+ 13

Convergence of CG (2)

Since |T;(n(A))| < 1, the convergence rate is
given by the denominator. Writing the condi-
tion number,

Amam

K — ,

Amin

it is easy to see that
k-+ 1
leall < T2 (522) lleoll

Using the given expression for the Tchebychev
polynomials, and noting that the second term
vanishes with increasing ¢, it can be shown
that

Vr—1Y\
) leol

||ei|| <2 (m

Problem 6: Prove the above formula.

Dependence on Eigenvalue
Distributions

CG builds a minimal polynomial whose zeroes
are the eigenvalues of the matrix A—

len|| = 0 = Z'Egz)\aPQO\a)-
87

The order of the polynomial is n.

We have proved that in the most generic case,
n = N. However, from the above, if some of
the roots are repeated, then n < N.

Problem 7: For free Fermions on a L# lattice
with anti-periodic boundary conditions, how
many steps are required for convergence of
the CG algorithm in exact arithmetic?

Algorithmic Complexity (2)

Exact solution of the problem (in exact arith-
metic) is O(N?).

The number of steps required to reach the
limit [le;]| < €llegl] is

1 2
Nstep < Eﬁlog <_> .

€

The solution requires time of O(N+/k) and
memory space of O(N).

Problem 8: Find the complexity of the steep-
est descent method.

Preconditioning

If M is a Hermitean matrix that approximates
A in some appropriate sense, then the problem

M 1Az =M1

iS easier to solve, provided M is easy to invert.
However, M~—1A is not necessarily Hermitean.

If we can find any E such that M = EET, then
we can solve

EYA(EDly=E"15, where y=Ez.

This is a Hermitean problem.

Problem 8: Prove that the eigenvalues of
E-1A(E~1)T are the same as those of M—1A.

Such preconditioning works by changing the
condition number of the problem and the clus-
tering of eigenvalues. The simplest precondi-
tioner is the diagonal matrix M obtained by
setting all off-diagonal elements of A to zero.

+ 17

Perfect Parallelisation

If a job can be done totally in parallel, and
the CPU time on a serial machine is S, then
on P processors, the usage time, U, will be

U=S/P.

An example of such a problem is the addi-
tion of two vectors (assuming that the vec-
tor components are already divided among the
Processors).

Parallelising never decreases CPU time usage.

We define the speedup

>=2
U

For a perfectly parallelisable problem, > = P.

If parallelisation involves inter-processor com-
munications, then it increases user time and
decreases the speedup.

+ 18

Imperfect Parallelisation

Take the computation of a dot product of
two vectors v and v. Assume that the vectors
are equally divided among P processors. Each
processor computes its part of the dot prod-
uct, sends this value to all other processors,
adds the P numbers together to get the dot
product. If each communication takes time C
and blocks the channel, then

P
14+ (C/S)P? =P

U=%—|—CP and > =

The overhead due to communications pre-
vents us from gaining in U by breaking the
problem into smaller and smaller pieces. For
a given value of C'/S, the optimum is

S 1 /S 1
Po=1/—, and X,=—/—==—PF,.
¢ \@ T 2Ve 27°

The optimum speedup is always half the per-
fect speedup!

+ 19

Parallel CG

The simplest parallelisation of CG is to divide
all vectors and A among the processors. This
may take some initialisation time, which we
do not take into account.

There are two dot products to be evaluated.
Each of these is a point of synchronisation of
the processors. The parallelisation of a dot
product has already been examined. Hence, a
straightforward parallelisation of CG would at
best give half the perfect speedup.

Problem 9: How does the optimum number
of processors depend on the size, N, of the
matrix being inverted?

Problem 10: How does the speedup of CG
scale with N7 How does the memory require-
ment of parallel CG scale with N7

+ 20

Improving Parallel CG

The main bottleneck in CG are the two syn-
chronisation points. There are several possi-
ble ways to cut down user time—

1. If the architecture allows simultaneous com-
putation and communication, the we can
try to rearrange the CG to mask the com-
munication wait by a computation.

2. There are methods to re-arrange the com-
putation and reduce the number of syn-
chronisation points to one. The stability
of such methods need study.

3. It is possible to generate several Krylov
space vectors in parallel and simultane-
ously orthogonalise them by an explicit
Gram-Schmidt procedure.

Problem 11: Investigate the parallel version
of Gram-Schmidt orthogonalisation.

+ 21

Other Issues

In the general case we would like to investi-
gate the parallelisation of matrix-vector prod-
ucts Av. However, in the lattice Fermion case
this does not seem to be a bottleneck.

Preconditioning is not always efficiently paral-
lelisable. For the lattice Fermion problem on
a hypercubic lattice, a degree of parallelisa-
tion can be achieved by utilising the even-odd
decomposition of the lattice.

For an overview see the netlib article by Jack
Dongarra (1995)—

http://www.netlib.org/linalg/html_templates/
nodel05.html#SECTIONO00940000000000000000

