Survival without a fittest

Sourendu Gupta, TIFR, Mumbai

August 28, 2003

- 1. Biodiversity: what it is and how it arises
- 2. E. coli, plasmids and colicins
- 3. Games and graphs: games, boards and moves
- 4. Parallel updates: topology and metapopulation dynamics
- 5. Stochasticity: Coarsening and power laws
- 6. Future directions

Biodiversity is in the genes

- Economic importance: monoculture of grapes in France lowered biodiversity and allowed Phylloxera to wipe out all grapes.
- Niches are important: persistence of sickle cell anemia in the Ganges delta region may be adaptive response to Malaria.
- Numerically huge: the immune system has developed combinatorial mechanisms to fight infections— implying immense genetic diversity in infectious bacteria.

Only a small fraction of bacteria occurring in nature can be cultivated in the lab. A 30 gm sample of soil from a Norwegian forest is estimated to have 5×10^5 species of bacteria. V. Torsvik, J. Goksoyr and F. L. Daae, *Appl. Envirn. Microbiol.*, 56 (1990) 782.

Possible mechanisms

- Stochastic effects such as genetic drift can fix/eliminate genes.
- Many genes are neutral to selection and hence are affected only by drift.
- Even for adaptive genes, some diversity is due to non-equilibrium effects.
- Diversity of ecological niches drive genetic diversity.

This model of bacterial diversity allows a self-consistent description of ecological niches through local diversity of genes and allows quantitative tests of adaptive responses and/or neutrality.

http://www.tomklare.com/

E. coli, plasmids ...

Motile, rod shaped bacteria. Natural habitats are soil, water, plants, invertebrates and intestines of most vertebrates. In a normal human organism, prokaryotic cells outnumber human cells by one order of magnitude: of which about 0.1% can be $E.\ coli$.

Plasmids are loops of DNA which are mobile genes and can shuttle between bacteria. More than 250 plasmids occurring in *E. coli* have been studied—antibiotic resistance, heavy-metal resistance, pathogenicity, metabolic properties, *etc.*. D. L. Hartl and D. E. Dykhuizen *Ann. Rev. Genet.*, 18 (1984) 31.

... and colicins

Colicins are toxins produced by *E. coli* using plasmid DNA. There are more than 30 colicins known. A bacterium producing a toxin but not the corresponding anti-toxin commits hara kiri. Toxin production diverts resources from growth.

For each colicin, one has three variants:

- strain W: the wild type, producing neither the toxin nor the anti-toxin
- strain T: producing both the toxin and the anti-toxin
- strain A: producing only the anti-toxin

The fitnesses are ordered as: W > A > T > W. This cyclic fitness pattern has been demonstrated recently. B. Kerr *et al.*, *Nature*, 418 (2002) 171.

Games and graphs

Analysis using game theoretic models on graphs is a standard technique of modern population biology.

- The evolution of cooperation was investigated in a game-theoretic model in which the Prisoner's dilemma is played repeatedly. Often the Nash equilibrium is avoided, and cooperative strategies spread through a population.
- Evolution of tree heights has been investigated as a game theoretic model in a flat landscape.
- Competition between species of grasses has been investigated as a game on a 2d square lattice.

Dominance Games

Every game is a matrix or a graph. The 3-color *E. coli* TAW game has the payoff

Dominance games are generalizations: define by requiring o arbitrary directed polygons or o a 3 colour dominance sub-game. The second alternative is more stable.

Populations, meta-populations and conservation

Game graphs: the board

I will mainly analyze the game played on a 1d lattice with periodic boundary conditions— a loop of string coated with agar and inoculated with the bacteria.

Then generalize this to a small-world graph built over this by adding some bonds at random: model of metapopulations of *E. coli*.

Updates: the moves

- 1. Parallel update (PU): all players play a game with each neighbour and assess their winnings at the tick of a clock.
- 2. Stochastic sequential update (SSU): at the tick of a clock a randomly chosen pair of neighbours plays the game (match time units to PU).

. . .

- 1. Invasion update: winner takes over the loser's site, play by pairs
- 2. Nash update: each site taken over by the neighbour with largest winnings.
- 3. Pareto update: a site taken over by the neighbour with largest winnings only if that site has less than average winnings.

Parallel updates

Choose random initial configuration and evolve: kinematic relativity emerges. Locally stable structures have lifetime > size. Initialization is a winding of the lattice over the game graph (winding along the arrows gives a right moving interface). Winding number is chirality, χ . Locally stable structures have $\chi \in \{-1,0,1\}$.

- Biodiversity lives: χ is conserved.
- Genetic drift is a random walk: $P(\chi = 0) \propto 1/\sqrt{N}$.
- ullet Carrying capacity is zero: $\langle \chi \rangle \propto \sqrt{N}$,

Parallel updates: metapopulation dynamics

Tangled loop: the shortest loop with $\chi \neq 0$ drives the rest. The period is the size of this loop. Lessons for conservation ...

Correlations

C(r,t;r't')= probability that the site r at time t is of the same colour as the site r' at time t'. Translationally invariant for t,t'>N/2—

$$C(R+r,T+t;R,T) = C(r,t) = C(|r+\overline{\chi}t|) = \sum_{k=0}^{N-1} c_k \cos\left[\frac{2\pi k}{N}(r+\overline{\chi}t)\right],$$

The fraction of the population inside a patch of size L is specified by averaging C over all N/L patches of size L—

$$f(L) = \sum_{x=1}^{L} C(x).$$

Clearly, $f(L=N)=c_0$. If there is a typical size, ξ , of domains, then only the Fourier modes with $k\gg N/2\pi\xi$ can be large. As a result, $f(L\gg\xi)$ must be nearly constant. ξ can be identified with the correlation length.

Stochastic Sequential Update

Loss of relativity means interfaces can collide. Rules for interface mergers—

$$L+L\to R, \qquad R+R\to L, \qquad R+L\to \varphi.$$

Interfaces decrease— domain coarsening problem.

Biodiversity must die

 $p = \text{number of interfaces} \propto N^{\alpha}$

 $l = \text{average size of domains} \propto N^{1-\alpha}$

 $w = \text{prob that a given domain changes by one} = \frac{1}{N}$

au = au time for the domain to disappear $\propto l^2/wN = N^{2(1-lpha)}$

When $p = \mathcal{O}(1)$ then $\tau = \mathcal{O}(N^2)$

A power law

At time $t \propto N^{\beta} \leq N^{2(1-\alpha)}$, assume $\xi(t) \propto t^{\beta} \propto N^{\Phi}$. Then

$$C(r,t) = \xi(t)^{\gamma} \mathcal{C}\left[\frac{r}{\xi(t)}\right] = N^{\Gamma} \mathcal{C}\left[\frac{r}{N^{\Phi}}\right].$$

Then $\Phi = 1 - \alpha = -\Gamma$

Future directions

At every triple vertex on a plane, the 3-colour game gives a locally stable structure, and hence gives a stable structure on a sphere.

The non-trivial 4-colour game in 1d has homotopy group \mathbb{Z}^3 and hence conserves biodiversity in three basic arrangements. It also gives locally stable structures on a sphere.

Patterns on 2d patches with edges, metapopulations in 2d, scale free networks, dynamic networks, stochasticity ...