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Why sweat?

Z = e−F/T =
∫
DUe−S

∏
f detM(U,mf , µf)

• If M† = Q†MQ for some Q, then clearly detM is real.

• For µ = 0 Q = γ5. For µ 6= 0 no Q exists.

• Monte Carlo simulations of Z fail.

• However, Z remains real and non-negative: thermodynamics is safe.

All lattice computations done with mu = md (Nf = 2). Some also with ms/Tc ≈ 1

(Nf = 2 + 1). Many with det M = 1 (Nf = 0).
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Reweighting

Do simulations at µf = 0, re-express expectation values in terms of these—

〈O〉µ =
〈O exp(−∆S)〉
〈exp(−∆S)〉

where S = S −
∑

f

Tr logMf ,

Glasgow method

Budapest method

µ

β
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Reweighting: results

Reweighting done for coarse lattices (Nt = 4) and Nf = 4, 2 and 2+1.

Z. Fodor and S. D. Katz, J. H. E. P., 03 (2002) 014.
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Reweighting: variants

• Express the reweighting in terms of derivatives of Z with respect to chemical
potential.
C. R. Allton et al., Phys. Rev., D 66 (2002) 074507

• Simulate imaginary chemical potential (positive detM) and do analytic
continuation. This actually the same as above.
M. D’Elia and M.-P. Lombardo, hep-lat/0209146

P. De Forcrand and O. Philipsen, Nucl. Phys., B642 (2002) 290

Reweighting suffers from finite lattice effects.

Systematic Taylor series expansion cures this.
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Taylor Expansion

Since PV = −F = T logZ, the Taylor expansion of P is the same as of F !

1
V
P (T, µu, µd) =

1
V
P (T, 0, 0) +

∑
f

nfµf +
1
2!

∑
fg

χfgµfµg + · · ·

where the quark number densities and susceptibilities are—

nf =
T

V

∂ logZ
∂µf

∣∣∣∣
µf=0

χfg =
T

V

∂2 logZ
∂µf∂µg

∣∣∣∣
µf=µg=0

χfgh··· =
T

V

∂n logZ
∂µf∂µg∂µh · · ·

∣∣∣∣
µf=µg=···=0
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Derivatives

Derivatives of logZ can be expressed in terms of derivatives of Z. The latter can
be constructed by the chain rule.

Zf =
∂Z

∂µf
=

∫
DUe−STr M−1

f M ′
f .

Note: M ′ = γ0 and M−1 = ψψ, so Tr M−1M ′ = ψ†ψ. Odd derivatives vanish
for µf = 0 by CP symmetry. S. Gottlieb et al., Phys. Rev. Lett., 59 (1987) 2247

1 2 11

111 21 3

S. Gupta, Acta Phys. Pol., B 33 (2002) 4259
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Quark number susceptibilities

• Fluctuations of conserved quantities in heavy-ion collisions are related to χuu.
Isospin fluctuations are related to χ3 = χuu − χud, charge fluctuations can also
be constructed out of these. M. Asakawa et al., Phys. Rev. Lett., 85 (2000) 2072; S.

Jeon and V. Koch, ibid., 85 (2000) 2076

• Under certain conditions strangeness production rate can be related to the
strange susceptibility, χss. R. V. Gavai et al., Phys. Rev., D 65 (2002) 054506

• The pressure at finite chemical potential is essentially determined by the
susceptibility. R. V. Gavai and S. Gupta, hep-lat/0303013

• χ3 is the zero momentum Euclidean finite temperature vector propagator and
hence closely related to a transport coefficient— the DC electrical conductivity
of quark matter.
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Some notation

With two degenerate flavours of quarks, in flavour space the linear susceptibilities
form the matrix (

χu χud

χud χu

)
Redefining µ0 = µu + µd and µ3 = µu − µd, this matrix becomes(

χu + χud 0
0 χu − χud

)

We define

χ3 = χu − χud =
〈
Tr M−1M ′M−1M ′ − Tr M−1M ′′〉

χud =
〈(

Tr M−1M ′)2
〉

and χ0 = χ3 + 2χud
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Finding the continuum limit

Main technical problem is to control the extrapolation to zero lattice spacing. For
this we use two different kinds of Fermions (staggered and Naik) and perform
simultaneous extrapolation with both: in the quenched theory.

R. V. Gavai and S. Gupta, Phys. Rev. D 67 (2003) 034501
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Perturbation theory
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J.P. Blaizot, E. Iancu and A. Rebhan, Phys. Lett., B 523 (2001) 143

A. Vuorinen, hep-ph/0212283
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χud

χud = 0 for all T > Tc, but not T < Tc.

Perturbation theory is unable to explain this.
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R. V. Gavai et al., Phys. Rev., D 65 (2002) 054506
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Event to event fluctuations

Each heavy-ion collision event, followed by the hadronisation, is one realisation of
the whole ensemble of possible thermodynamic systems. Within a given rapidity
region, the total amount of any conserved charge fluctuates from one event to
another. The variance is determined by the response function of QCD matter in
equilibrium.

M. Asakawa et al., Phys. Rev. Lett., 85 (2000) 2072

S. Jeon et al., Phys. Rev. Lett., 85 (2000) 2076

D. Bower and S. Gavin, Phys. Rev., C 64 (2001) 051902

From lattice computations it is seen that

χB < χQ < χs (T > Tc)
χB > χQ > χs (T < Tc)

R. V. Gavai, S. Gupta, P. Majumdar, Phys. Rev.¡ D 65 (2002) 054506
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Strangeness production
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λs =
〈ns〉

〈nu + nd〉

J. Cleymans, J. Phys., G 28 (2002) 1575,

R. V. Gavai and S. Gupta, Phys. Rev., D 65 (2002) 094515.
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Prescription

Chemical potential on the lattice is prescription dependent. Why? The continuum
Dirac operator specifies effects of an infinitesimal time translation. On the lattice
we deals with finite translations (by lattice spacing a). There are many ways of
doing this which lead to the same infinitesimal transformation.

This is the origin of problems with reweighting: it gives no indication of how large
the lattice artifacts are.

Taylor series expansion is prescription dependent beyond 2nd order at every finite
lattice spacing a, but prescription independent for a→ 0. With explicit Taylor
expansion we can take the continuum limit.

R. V. Gavai and S. Gupta, hep-lat/0303013
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Obtaining pressure

P (T, µ) = −F/V = P (T, 0) + χ3(T )µ2 +
1
12
χuuuu(T )µ4 +O

(
µ6

)
= P (T, 0) + χ3(T )µ2

[
1 +

(
µ

µ∗

)2

+O
(
µ4

µ4
∗

)]
.

where µ∗ =
√

12χ3/χuuuu and other 2nd and 4th order terms have been
neglected. Well-behaved for µ� µ∗ if all the higher order terms are small enough.
All results can be obtained in the continuum. Term by term improvement of the
series is possible. Series should fail to converge near a critical point. Series
extrapolation methods should then be used to locate the critical point nearest to
µ = 0.
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Radius of convergence

3.6

3.8

4.0

4.2

4.4

4.6

4.8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

*/
T

µ

1/N  t
2

4-th order estimate of µ∗ at T = 1.5Tc. At finite Nt, the series is insensitive to
prescription when µ� µ∗. In the continuum µ∗ is the first estimate of the radius
of convergence of the series.
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The pressure
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(Reweighting) Z. Fodor, S. D. Katz and K. K. Szabo, hep-lat/0208078,

(Taylor expn) R. V. Gavai and S. Gupta, hep-lat/0303013
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Condensates and masses

Talor expansions can also be made for expectation values of any operator. We are
investigating this for

1. Condensates: 〈ψψ〉 changes quadratically with µ, and the quadratic coefficient
is the same for isovector and baryon chemical potential. This number is also
related to λs in strangeness production through a Maxwell relation.

2. Masses: The mass splitting of charged pions at finite isovector chemical
potential is linear in µ, but that of the neutral pion is quadratic. This quadratic
coefficient is the same as shift in pion mass at finite baryon chemical potential.

O. Miyamura et al., Phys. Rev., D 66 (2002) 077502,

S. Gupta, hep-lat/0202005, S. Gupta and Rajarshi Ray, in progress

Chemical potential/S. Gupta: Kolkata, 2003 to plan, Phases, Reweight, Expansion, QNS, EOS, masses, end 19



Summary of Results

• Susceptibilities provide a systematic and easy way of computing quantities
non-perturbatively at finite chemical potential in the continuum.

• Computation of several high order susceptibilities may allow estimation of the
critical end point by series extrapolation methods.

• Fluctuations and strangeness production rate in heavy-ion collisions are related
to susceptibilities.

• Susceptibilities allow extension of the equation of state to finite chemical
potential.

• Taylor expansions yield identities between behaviour of various quantities at
finite isovector and baryon chemical potential.
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