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1. Screening correlators: departure from weak coupling theory?

2. Temporal correlators: transport coefficients and linear response theory.

• Bayesian methods— functional and parametrised
• Bayesian analysis of lattice data: yields small transport time scale

3. Some phenomenology



Hadronic Correlators for T > 0 or µ > 0
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Temporal correlators have the same classification (JPC) as T = 0 correlators.
Screening (spatial) correlators are classified by the group C ⊗ Z2(TE)⊗ Z2(CE).
The PS, S, V0, Vx+y, AVt and AVx+y screening correlators are all in a single irrep
of the latter and hence should be degenerate in (screening) mass.
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Lattice simulations

1. Continuum extrapolation using lattice spacings 1/4T ≤ a ≤ 1/14T .

2. High temperature phase investigated for 1.5 ≤ T/Tc ≤ 3.0.

3. Quenched QCD, Wilson action, Nf = 2 staggered valence quarks. At most 5%
influence of unquenching in quantities under study. Further unquenched
computations under way.

4. Volume dependence controlled by comparing some of the results obtained on
T × (2T )3, T × (3T )3 and T × (2T )2 × (4T ) lattices.

5. Renormalisation of operators extracted by T = 0 simulations at the same
lattice spacings.

2



Screening correlators

For T > 0 the pattern of degeneracies expected for lightest states is observed at
small a. (Fat-link fermions have this behaviour even on coarse lattices.)
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Screening correlators

For T > 0 the pattern of degeneracies expected for lightest states is observed at
small a. (Fat-link fermions have this behaviour even on coarse lattices.)
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Screening correlators

For T > 0 the pattern of degeneracies expected for lightest states is observed at
small a. (Fat-link fermions have this behaviour even on coarse lattices.)
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Screening masses

Staggered quark screening masses agree with free field theory. Insignificant quark
mass dependence for m ≤ T . Overlap quarks at coarse lattice spacing give similiar
results.
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Gavai and SG, Phys. Rev., D 67 (2003) 034501

Laine and Vepsalainen, hep-ph/0311268 and Hansson and Zahed, Nucl. Phys., B 374 (1992) 277
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Long distance physics

Screening mass does not capture the full physics. Momentum space correlator
shows that long distance physics is different from free field theory of quarks.
There is also too much power in the long distance part of the correlator when
compared to a single boson exchange.
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Temporal correlators:
electrical conductivity and photon emissivity

The differential photon emissivity is given by—

ω
dΩ
d3p

=
CEM

8π3
nB(ω;T )ρµ

µ(ω,p;T ) where CEM = 4πα
∑

f

e2
f ≈

1
21

.

In terms of the DC electrical conductivity (j = σE)

σ(T ) =
CEM

6
∂

∂ω
ρi

i(ω,0;T )
∣∣∣∣
ω=0

,
8π3ω

CEMT 2

dΩ
d3p

= 6
σ

T
.

Since kµρµν = 0, we have ρ00 = 0 along the line p = 0. Formally,

ρ00(ω,0;T ) = 2πχQωδ(ω),

where χQ is the charge susceptibility.
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Linear Response Theory

The response, A(t), of a system to a force F(t) if non-linear terms are neglected—

A(t) =
∫ ∞

−∞
dt′χ(t− t′)F(t′) hence A(ω) = χ(ω)F(ω).

Causality implies χ(t) = 0 for t < 0. As a result χ(ω) is regular in the upper half
plane and dispersion relations follow. The spectral density is the imaginary part of
χ(ω) as ω approaches the real axis from above. A microscopic computation
explicitly relates χ(ω) to the retarded propagator. From this follow the Kubo
formulæ relating the transport coefficient and the zero energy limit of the spectral
density—

χ ∝ lim
ε→0

∫
d3x′

∫ t

−∞
dt′′eε(t′′−t)

∫ t′′

−∞
dt′〈A(x, t)A(x′, t′)〉.

J. Hilgevoord, Dispersion Relations and Causal Description, North-Holland, 1960
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Euclidean Correlators

In the Euclidean theory one constructs equilibrium correlation functions which are
related to the spectral function by the relation—

G(τ,p;T ) =
∫ ∞

0

ω

2π
K(ω, τ ;T )ρ(ω,p;T ).

In a lattice theory there are Nt points in the τ direction, but there is a continuous
infinity of ω.

Replace integral by sum, the linear relation above becomes a set of linear
equations: more variables than equations. Inverse of K is ill defined. Convert to a
minimisation/Bayesian problem.

(Opposite of least-squares fit: more equations than unknowns)
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Regularisation

Maximize the Bayesian probability—

P (ρ|G) ∝ P (G|ρ)P (ρ) = exp[−F (ρ)],

F (ρ) = (G−Kρ)TΣ−1(G−Kρ) + βU(ρ)

β is a regularisation parameter, and U(ρ) is a function which we are free to
choose. This encodes our prior knowledge of the system.
A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems, Wiley, New York (1977)

1. Maximum Entropy Method: U =
∑

ρ log(ρ/ρ0)− ρ Y. Nakahara, M. Asakawa and T.

Hatsuda, Phys. Rev., D 60 (1999) 091503, also QCD TARO, Nucl. Phys. B (Proc. Suppl.) 63

(1998) 460

2. Linear: U = ρTLTLρ, L = 1, D, D2, etc.SG, hep-lat/0301006

3. Include known information into the Bayesian probability G. P. Lepage et al., Nucl. Phys., B

(Proc. Suppl.) 106 (2002) 12.
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An example

Determine the parameters of the line y = a + bx passing through (1,1)

x

y

a

b

Simplified version of the actual problem to be solved: 2× L3 lattice.
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Solution: method 1

Method 1: General linear regulator U = ρTLTLρ

F (a, b) = (1− a− b)2 + β(l11a2 + l22b
2 + 2l12ab)

U is positive definite. The minimum occurs at

M

(
a
b

)
=

(
1
1

)
, where M =

(
1 1
1 1

)
+β

(
l11 l12
l12 l22

)
a

b

For all L the best
fit passes through the
data.

Most probable β = 0 :
(

a
b

)
=

l11 6=0 (x=l22/l11)︷ ︸︸ ︷
1

1 + x

(
x
1

)
or

l22 6=0 (x=l11/l22)︷ ︸︸ ︷
1

1 + x

(
1
x

)
(l12 = 0).
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Solution: method 2

Method 2: MEM

F (a, b) = (1−a−b)2+β

(
a log

a

A
+ b log

b

B
− a− b

)
The minimum is at

a

A
=

b

B
= u where 1− Y u =

β

2
log u,

and Y = A + B. Solutions exist only for Y > 0.
If Y < 1 then u > 1 and vice versa.
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A

/B
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The best fit does not pass through the data except when A + B = 1
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Solution: method 3

Method 3: Partial knowledge

Prior: the line passes through the origin. We can choose the Bayesian probability
distribution to be a Gaussian of width σ around the origin—

F = (1− a− b)2 +
a2

2σ
giving

(
a
b

)
=

(
0
1

)
.

If only information on b is needed then a can be integrated out of the Bayesian
probability to give the marginal distribution

P (b)db ∝ db exp
[
−(1− b)2

]
.

In this case marginalisation gives b=1 which is the same result as minimisation.
This is true if the distribution is unimodal.
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Lattice gauge theory with functional Bayesian methods

The lattice problem is to use—

G(τ,p;T ) =
∫ ∞

0

ω

2π
K(ω, τ ;T )ρ(ω,p;T ),

and the data on G to extract ρ.

One has only limited data from the lattice. This can be treated in different ways
to extract different kinds of physics. One method of analysis will not give us all
the information needed. We must tune the method to the problem.
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Large ω using MEM
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F. Karsch et al, Phys.Lett.B530:147,2002— Wilson quarks

Full agreement with Born for ω/T ≥ 4.

Default model: ideal gas behaviour. Output: ρ(ω) grows as ω2 at large ω.
Extracted value vanishes as ω → 0. Need to examine low ω region by another
method in more detail.
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Small ω using linear regulator

Since the problem is linear, work with

∆G(ω,p;T ) = Gfull(ω,p;T )−Gideal(ω,p;T ).

This gets rid of the ω2 divergence at infinity, at the cost of the positivity of ∆ρ.
Use a linear regulator. This shows a bump at small ω.

1

10

100

0 0.2 0.4 0.6 0.8 1

G
   

/3
T

3
V

∆

tT

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

a
a

V
2 ∆ρ

   
(  

ω
)

Tω/π  

Second and higher bump at ω/T ≈8–9.

SG, hep-lat/0301006
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Lattice gauge theory with parametrised Bayesian methods

Use a sequence of parametrisations for the
spectral density

∆ρ

T 2
=

z
∑N

n=0 γnz2n

1 +
∑M

m=1 δmz2m
.

Use with Fourier space correlators—

∆G(ωn,p;T ) =
∮

dω

2iπ

∆ρ(ω,p;T )
ω − ωn

where ωn = 2iπnT .

2π T

2π T N
t
= 2π/a

Two types of poles: S2 is
“relaxation time” and S4

is “Landau damping”.

Use χ2 parameter fitting if N + M + 1 ≤ Nt, Bayesian otherwise.

F. Karsch and H. W. Wyld, Phys. Rev., D 35 (1987) 2518; S. Sakai et al., hep-lat/9810031
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Electrical conductivity: continuum limit

Electrical conductivity depends only on the parameter γ. Obtain this by
marginalising over the remaining parameters. SG, hep-lat/0301006

σ
T ≈ 7CEM for 1.5 ≤ T/Tc ≤ 3

0

25

50

75

1 1.5 2 2.5 3 3.5

d 
  

C
   

 T
d 

 p
2

3
 =

p=
0

E
M3

8π
  ω

Ω
ω

T/T 
c

20

http://arXiV.org/pdf/hep-lat/0301006


Pinch singularities and transport

There are pinch singularities at small external energy, ω, from ladder diagrams.
These ladder diagrams correspond to multiple scatterings off particles in the
plasma.

����� ����������

k0

2γ
k

kE  + i kγ

ω+ kE  − i kγ

ω

ρ(
ω

)

ω/Τgg  ln(g)2

Transport: G. Aarts and J.M.M. Resco JHEP 0204:053,2002
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Parametric behaviour

∆G(ωn,p;T ) =
∮

dω

2iπ

∆ρ(ω,p;T )
ω − ωn

dominated by poles closest to the origin. If these are poles of ∆ρ then

Relaxation time

i ρ

2π iT

• |<G(ωn)| � |=G(ωn)| (?)

• sign<G(ωn) = sign=G(ωn) (?)

• <G(ωn) < 0.

Landau damping
2π iT

(a)

re
i φ

• |<G(ωn)| � |=G(ωn)| (?)

• sign<G(ωn) 6= sign=G(ωn) (?)

• <G(ωn) > 0.
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Lattice results
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• Relaxation time approach ruled out. Landau damping possible.

• For Nt = 12 fits possible with |n| ≤ 3.

• Smaller lattices give qualitative results but a fit is not possible.

• S4 poles at ω/2πT ≈ 0.15 and φ ≈ 0.2.
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Dynamical scales and phenomenology

1. A soft photon (ω ≈ T ) emitted in the plasma is reabsorbed if its path length is

` =
1
σ
≈ 1

7CEMT
≈ 3 fm.

Typical fireball dimensions at RHIC are a few fm, so the fireball is marginally
transparent to soft photons. This may change at LHC.

2. Typical hadronic length/time scales in the plasma are

τ ≈ 1
7T

≈ 0.15 fm.

Hydrodynamic description of the final state in the plasma works if its
thermalisation time is less than 1 fm. Therefore hydrodynamics may work at
both RHIC and LHC.
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3. Spontaneous thermal fluctuations of flavour even out by diffusion. The
diffusion constants, D, are related to the electrical conductivity as

σ =
∑

f

e2
fDfχf ,

where χf is the thermal susceptibility for particle number. We find
D ≈ 1

7T ≈ 0.15 fm, and hence the only visible chemical signals are those at
freeze out. Strong implications for strangeness production.
R.V. Gavai and SG, Phys.Rev.D65:094515,2002

4. Jets traversing the plasma are quenched. This calls for high shear viscosity, η.
Expect η/S ≈ 1/7(1 + c2

s), i. e., ΓsT ≈ 1/7. Try a computation of η in near
future.

25

http://arXiV.org/pdf/hep-lat/0202006


Summary

1. Screening masses close to free field theory, but shape of correlators strongly
differs from this.

2. Lattice computations of temporal correlators contain too little information to
parametrize near-equilibrium physics completely. Prior assumptions necessary.

3. Analysis methods must try to identify or isolate important physical behaviour.
MEM has done well in the large energy region. After subtracting the effect of
the large energy regime, linear Bayesian methods show an additional bump in
the small energy region.

4. A parametrised Bayesian method gives the electrical conductivity. Small time
scale for transport seen. Parametrised forms check specific models of
interactions and supports physics of Landau damping.

26



Screening masses
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Screening correlators
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Errors
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Errors
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Errors
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