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A Gaussian integral

Z(s) ≡ exp[−F (s)] =

∫ ∞

−∞

dx
√

2π
e
−(x−s)2/2

= 1

x(s) = s, and V (s) = 1,

where V denotes the variance of x. The Taylor coefficients of F (s), x(s) and V (s), in

expansions around s = 0, can be read off from here.

The Monte Carlo procedure for s = 0 is well-known. Draw two random deviates from an uniform

distribution 0 ≤ r1, r2 ≤ 1. These give two Gaussian random numbers

x1 =
√
−2 ln r1 cos(2πr2) and x2 =

√
−2 ln r1 sin(2πr2).

Perform this Monte Carlo. Values of x in the range X and X + dX are then obtained with

frequency proportional to the unit Gaussian.
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Reweighting and Taylor expansion

In reweighting each point sampled by Monte Carlo is given an extra weight

w(x, s) = e
−(s2−2xs)/2

The statistical estimates of any quantity one wishes to evaluate are made using this weight for

each sampled value of x. Taylor expand w and average.

-1

0

1

2

3

4

5

0 1 2 3 4 5

x(
s)

s

Sample size=10

2



Reweighting and Taylor expansion

In reweighting each point sampled by Monte Carlo is given an extra weight

w(x, s) = e
−(s2−2xs)/2

The statistical estimates of any quantity one wishes to evaluate are made using this weight for

each sampled value of x. Taylor expand w and average.

-1

0

1

2

3

4

5

0 1 2 3 4 5

x(
s)

s

Sample size=10
Sample size=100

3



Reweighting and Taylor expansion

In reweighting each point sampled by Monte Carlo is given an extra weight

w(x, s) = e
−(s2−2xs)/2

The statistical estimates of any quantity one wishes to evaluate are made using this weight for

each sampled value of x. Taylor expand w and average.

-1

0

1

2

3

4

5

0 1 2 3 4 5

x(
s)

s

Sample size=10
Sample size=100
Sample size=1000

4



Reweighting and Taylor expansion

In reweighting each point sampled by Monte Carlo is given an extra weight

w(x, s) = e
−(s2−2xs)/2

The statistical estimates of any quantity one wishes to evaluate are made using this weight for

each sampled value of x. Taylor expand w and average.
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Reweighting and Taylor expansion

In reweighting each point sampled by Monte Carlo is given an extra weight

w(x, s) = e
−(s2−2xs)/2

The statistical estimates of any quantity one wishes to evaluate are made using this weight for

each sampled value of x. Taylor expand w and average.
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Why reweighting goes crazy

Simple: finite statistics means tail of the distribution is always badly sampled. On reweighting,

what was once the tail eventually becomes the peak. Reweighting is exponentially hard.
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Why the Taylor expansion remains sane

The Taylor expansion can be rearranged in terms of cumulants—

1!t1 = 〈x2〉 ≡
[
x

2
]

,

2!t2 = 〈x(x
2 − 1)〉 ≡ 0,

3!t3 = 〈x2
(x

2 − 3)〉 ≡
[
x

4
]

+ 3
[
x

2
] ([

x
2
]
− 1

)
,

4!t4 = 〈x(3− 6x
2
+ x

4
)〉 ≡ 0,

5!t5 = 〈x2
(15− 10x

2
+ x

4
)〉 ≡

[
x

6
]

+
[
x

4
] (

15
[
x

2
]
− 10

)
+ 15

[
x

2
] ([

x
2
]
− 1

)2

.

The symmetries of the Gaussian for s = 0 imply that alternate coefficients vanish. The central

limit theorem says that only the second cumulant is non-vanishing. As a result, for a Gaussian of

unit variance, only the first Taylor coefficient is non-vanishing.
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