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The plan of these lectures

1. Fluctuations and the phase diagram: In this lecture I discuss what kind of
thermal information is carried by fluctuations. I also discuss the present state of
knowledge about the phase diagram of QCD.

2. Normal thermal fluctuations: I talk about the fluctuations of conserved
quantities away from a phase transition, and the lattice results for these
measurements.

3. Slicing up phase space: I present a critique of the various methods that
experimentalists have evolved of looking at fluctuations— cutting out the
messy bits and getting at the comparison with QCD.

4. Transport and balance: This lecture is about non-equilibrium processes in the
plasma, such as charge (flavour) diffusion— leading to an electrical
conductivity, and the influence of such processes on the balance function. This
could independently check speculations about a quark-gluon liquid.
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Lecture 1: Fluctuations and the phase diagram

1. Thermodynamic preliminaries— intensive and extensive variables, phase
diagrams, Gibbs’ phase rule.

2. The varieties of fluctuations— thermal, non-thermal, critical, etc..

3. The intensive parameters for QCD, and the structure of the QCD phase
diagram, as determined by the Gibbs’ phase rule.
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Thermodynamics: variables

Extensive and intensive thermodynamic variables—

dU = TdS − PdV + µdN +HdM +m2
πdφ

2 + · · ·

Extensive variables define the thermodynamic state of a system completely. No
exceptions. Order parameters are special extensive variables. Their values
distinguish between phases. They jump at a first order transition. Number of
extensive variables needed is dimension of Gibbs’ space— one for every conserved
quantity.

Intensive variables often define the thermodynamic state of a system. Exceptions
are first order transitions (i.e., phase mixtures). These variables (the complete set
is needed) are the coordinates of the phase diagram— i.e., a diagram that shows
the boundaries between different phases of a system.
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Thermodynamics: ensembles

Canonical ensemble allows fluctuations of extensive quantities—

dU = TdS − PdV + µBdB + µQdQ+HdM,

but intensive quantities are held fixed (thermostats). Phase diagram is a notion
from canonical ensembles.
Microcanonical ensembles hold some of the extensive quantities fixed—

dU = TdS − PdV + µBdB + µQdQ, (M fixed, rotational invariance),

= TdS − PdV + µBdB, (Q fixed, isospin invariance),

= TdS − PdV , (B fixed, UB(1) invariance),

dU = 0 (T, V fixed).

Ensemble can be microcanonical in some variables and canonical in others.
“Grand canonical” can be removed from the dictionary.
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Thermodynamics: Gibbs’ phase rule

Theorem. [Gibbs] In a phase diagram of a system with G dimensions of
Gibbs’ space, P phases can coexist along hypersurfaces of dimension
D = G+ 1− P .

Triple point

Critical point

Example. [Liquids] For a one component fluid, i.e., in a two dimensional
phase diagram, labelled by T and P , there are lines of first order phase
transitions where two phases coexist. If there is more than one such line, then
there could also be isolated triple points, where three phases can coexist.
There are also critical points, which are end points of first order lines.
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Thermodynamics: Gibbs’ rule in QCD
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Example. [Stephanov, Rajagopal, Shuryak, PRL, 81 (1998) 4816] In a
three dimensional phase diagram, labelled by T , µB and m = (mu +md)/2,
there are surfaces of first order phase transitions, where two phases coexist.
There are lines of triple points, where three phases coexist. There are also
critical lines which are edges of the first order surfaces, and a tri-critical point
which is the end of the triple phase line.
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Thermodynamics: Fe/Fe3C phase diagram
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Not a phase diagram— x-axis is actually an intensive variable written as a density.
The true phase diagram would have 3 coordinates: T , P and µ.
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Summary: Thermodynamics

j

1. Introduced extensive and intensive
thermodynamic variables.

2. Microcanonical system labelled by extensive
variables.

3. Canonical system labelled by intensive
variables.

4. Phase diagram shows when phase changes
occur as you change the values of intensive
variables.
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Fluctuations and the phase diagram

• Non-thermal fluctuations due to uncontrollable changes in hadronization,
impact parameter, etc.. Not of interest in heavy-ion physics now. Should
remove these. Methods will include phase space cuts of various kinds.

• Thermal fluctuations are of central interest. Are they visible? Are the effects
too small to be seen? If so, can the signals be boosted by some means?

– Normal thermal fluctuations— most of the time
– Fluctuations at a first-order phase transition— seen in low energy nuclear

collisions (Lopez et al,nucl-th/0504027)
– Critical fluctuations— single most important physics
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Thermal fluctuations

Non-conserved quantities in matter can fluctuate randomly, but conserved
quantities obey a continuity equation— ∇ · J − ∂tρ = 0. So, increase in the total
charge in one place implies decrease somewhere else.

Microcanonical ensemble in a variable conserves the total value of that variable.
Only fluctuations are global fluctuations of the extensive variable. For 4π
measurements fluctuations possible for either event-to-event value of extensive
variable or slope of spectrum (T , µ etc., intensive).

Canonical ensemble in a variable is obtained by thermostatting the intensive
parameter (T for energy, µQ for electrical charge, µB for baryon number, etc.).
Realized in finite acceptance measurements— accepted portion is body, rest is
heat-bath. T , µ etc., are fixed, and only fluctuations of extensive quantity are
possible in these measurements.
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Fluctuations at a first order transition

At a first order transition two phases exist in equilibrium: phase mixture exists at
Tc; called the “mixed phase”. These phases have equal values of the intensive
variables (Tc, P , etc.), but different values of the extensive variables (U , V , etc.).
Fluctuations of extensive quantities will be seen— spinodal decomposition.

System Quantity Discontinuity Observable
Water-steam energy density latent heat local energy fluctuations

mass density specific volume fluctuation in number
Ferromagnet spin spontaneous fluctuations of

magnetization local magnetization
QCD system baryon number baryon fluctuations

charge charge fluctuations
Nuclei density fragment size distribution

Gavin,nucl-th/9908070
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Nuclear Physics Example

<60 MeV
QT
t12(a) E <120 MeV

QT
t12(b) 60<E

<180 MeV
QT
t12(c) 120<E <240 MeV

QT
t12(d) 180<E

<300 MeV
QT
t12(e) 240<E >300 MeV

QT
t12(f) E

zη
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

10
20
30
40
50
60

1
Z

10
20
30
40
50
  0

  0
10
20
30
40
50
  0

Pichon et al (INDRA), NP A 749 (2005) 93

Fragment charge distribution (in low-energy nuclear collisions) is bimodal, and
switches from one value to another as the control parameter is changed. At the
transition point the bimodal distribution gives rise to enhanced fluctuations.
http://www.g-eng.cam.ac.uk/mmc/teaching/typed/addenda/microstructures1.html
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Fluctuations at a critical point

If the effective potential of the order parameter, φ, is of the form V = m2φ2 (here
m is called a screening mass), then the probability of a fluctuation is the
Gaussian—

P (φ) ∝ e−V/T = e−m2φ2/T

At a critical point, the screening mass vanishes, and hence the fluctuations are
undamped. First proposed at the chiral phase transition in (unrealistic) QCD with
mπ = 0. At this critical point mσ = 0 and the fluctuations are
undamped—disoriented chiral condensates.
Rajagopal and Wilczek, 1993

Idea revived when it was realized that for realistic pion masses, QCD has a critical
end point at finite chemical potential.
Stephanov, Rajagopal and Shuryak, 1998
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Summary: fluctuations

1. Non thermal fluctuations: not the topic of these lectures; important for
understanding some aspects of hadronic physics.

2. First order fluctuations: spinodal decomposition, new avatar of dcc-like physics;
important but largely unexplored. Will become important with energy scans.

3. Critical fluctuations: theoretically well understood, but application to heavy-ion
collisions not yet worked out. Will become important with energy scans.

4. Normal thermal fluctuations: focus of most work these days.
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The QCD phase diagram

For Nf = 2, there are 5 variables—

1. the quark masses mu and md (m2
π ∝ m =

(mu +md)/2).
2. the temperature T
3. the baryon chemical potential µB

4. the charge chemical potential µQ

For Nf = 3, there are 7 variables; all of the above
and

1. the quark mass ms

2. the hypercharge chemical potential µY

Evolution
T

µ µQ B
changing nuclei

fixed nuclei

increasing energy

Freezeout

A curve in the T , µB, and µQ space is followed by changing collision energy— the
freezeout curve. Cleymans, Becattini, Redlich, Braun-Munzinger, etc.

Open question: how good is the thermalization? (v2 does not reach hydro limit?)
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Lattice summary at the end of 2000
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SG, PR D 64, 034507: 2001
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Precision physics at finite T
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The T axis

Lattice work since 1985 has concentrated on exploring the T axis. Twenty years of
hard work has yielded the following insight—

1. Quarkless QCD has a first order phase transition at Tc = (1.15± 0.05)ΛMS.

2. Nf = 2 QCD is likely to have a second order phase transition in the chiral limit
(mπ = 0).

3. Nf = 2 QCD with realistic quark masses probably has a cross over and no
phase transition in the vicinity of Tc = 0.49ΛMS ≈ 170 MeV.

4. Nf = 2 + 1 QCD with realistic quark masses probably has a cross over at Tc

not very different from the above value.
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The generic phase diagram of QCD: T and µB
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Lattice computations of the critical end point of QCD

All lattice exploration of the phase diagram (T and µB) have several hidden
parameters—

1. the lattice spacing a which can be traded for mρ or mN . Taking the limit
a→ 0 is called renormalization, or taking the continuum limit.

2. the quark mass m which can be traded for mπ. The limit m→ 0 is called the
continuum limit. Small, non-zero m gives PCAC, approximate chiral symmetry.
This universe has mπ/mρ = 0.18. mπ/mρ ≈ 1 breaks chiral symmetry totally.

3. the lattice volume, V = (aNs)3, which should be infinite for thermodynamics.
An internal scale for measuring lengths is the Compton wavelength of the pion.
So mπaNs should be large enough.
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A minor gloss
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←− “Agreement” between Budapest
and Bielefeld is the sign of a problem!

Collab T/mρ mπ/mρ mπaNs

Budapest 5.4 0.185, 0.31 2–3, 3–4
Bielefeld 5.5 0.7 15.4
Mumbai 5.4 0.3 3.3–10.0
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The critical end point of QCD: T and µB
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The critical end point estimate depends strongly on mπL and mπ/mρ. Estimate
on right extrapolated to mπL→∞, at mπ/mρ = 0.3. µE may decrease a little
for more realistic mπ.

Gavai, SG,hep-lat/0412035
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Dependence on quark mass
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Surfaces of first order transitions with edges which are lines of critical points.
These surfaces meet in lines of triple points. A tri-critical point is at the end point
of this line, and therefore also at the meeting point of the two critical lines.

Note that the surface m = 0 has enhanced symmetry. As a result, there is a
critical point if we move along the line µB = 0 in this plane.
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Adding the strange quark

These are not phase diagrams

These diagrams are mnemonics— they map out the regions of quark masses where
the finite temperature transition is of a given order. A phase diagram would show
phase boundaries as you change parameters.

There are no phase boundaries in the T = µB = µQ = µY = 0 plane as the quark
masses are varied. All over this plane chiral symmetry is broken with 〈ψψ〉 = 0.

Jammu/S. Gupta: May 2005 to plan, Lecture 1, (S, S, S) Lecture 2, (S, S, S) Lecture 3, (S, S, S) Lecture 4, (S, S) summary. 24



Phase diagram with strange quark
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Full Nf = 2 phase diagram
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When all 5 intensive variables are taken into account, we find
4-volumes of 2-phase coexistence

3-volumes of normal criticality and 3-phase coexistence

surfaces of tri-criticality and 4-phase coexistence

lines of tetra-criticality and 5-phase coexistence

isolated penta-criticality

Only first and second order phase transitions. What was earlier called a tri-critical
point is actually a penta-critical point seen in a slice of high symmetry.
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Summary: QCD phases

1. QCD phase diagram is 7 dimensional: T , 3 quark masses, 3 chemical potentials.

2. One line (T ) has been explored in lattice simulations till now.

3. One plane (T and µB) most of the focus of experimental and theoretical work.

4. First determination of the critical point performed recently.

5. Preliminary theoretical explorations of the full phase diagram in progress.

6. Can experiments probe more than one line in the 7− 3 = 4 dimensional space?
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Lecture 2: Normal thermal fluctuations

1. Statistical mechanics and the meaning
of fluctuations; introduction to lattice
computations.

2. Defining fluctuations in heavy-ion collisions,
the importance of conserved quantities; a
dimensionless measure.

3. Lattice measurements of susceptibility
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Statistical mechanics

In the canonical distribution one computes

Z(T, µB, µQ) =
∫

DUe−S[U ] = exp[−F (T, µB, µQ)/T ].

All of thermodynamics is obtained in terms of derivatives. The first derivatives are
the extensive variables—

E = T 2∂ logZ

∂T
, B = T

∂ logZ

∂µB

, Q = T
∂ logZ

∂µQ

.

The second derivatives are the response functions—

cV =
T 2

V

∂E

∂T
, χB =

1

V

∂B

∂µB

, χQ =
1

V

∂Q

∂µQ

.

Jammu/S. Gupta: May 2005 to plan, Lecture 1, (S, S, S) Lecture 2, (S, S, S) Lecture 3, (S, S, S) Lecture 4, (S, S) summary. 29



Statistical fluctuations

Z(T, µB, µQ) =
∫
DUe−S[U ] =

∫
dx exp

[
− (x− E)2

2V cV /T 2

]
where the last integral can be written after suitable change of variables and
integration over all variables except one. Furthermore, this result is obtained only
when one is far from a phase transition. Similarly

Z(T, µB, µQ) =
∫
dx exp

[
−(x−B)2

2V χBT

]
=
∫
dx exp

[
−(x−Q)2

2V χQT

]
.

So normal thermal fluctuations are Gaussian and the width is a measure of the
thermodynamic response functions. Note: fluctuations of extensive quantities
scale as

√
V .

Dimensions: E/V ∝ T 4, B/V ∝ T 3, Q/V ∝ T 3, cV ∝ T 3, χB ∝ T 2, χQ ∝ T 2.
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Temperature in quantum statistical mechanics Z zz z z

Since Z = Tr exp[−H/T ]; and the density matrix resembles the time evolution
operator, U = exp[iHt], the easy way to introduce temperature in a quantum
field theory is—

• take an Euclidean-time version, t↔ it

• take the size of the Euclidean-time direction to be 1/T

• put periodic or anti-periodic boundary conditions to get the trace

Boundary conditions values of E poles of
periodic 2πiTn 1

exp(E/T )−1

anti-periodic 2πiT
(
n+ 1

2

)
1

exp(E/T )+1
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Chemical potential in quantum statistical mechanics

In quantum theory a symmetry gives a conserved charge—

If [H,Q] = 0 then for Hψ = Eψ, one has Qψ = qψ.

Every conserved quantity adds an extensive variable to the thermodynamics. A
chemical potential is added to the statistical mechanics—

Z(T, µ) = Tr exp
[
−
H

T
− µQ

]
.

A quantum field theory allows creation and destruction of particles. If particles are
massive (m� T ) then particle number is conserved even without a chemical
potential— energy conservation is enough. If particles are light or massless, then
particle number is not conserved— only the total charge is conserved.
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Lattice Statistical Mechanics

Z =
∫
dU dψdψe−S

Gauge action = discretized Maxwell equation Wilson, Symanzik
Quark action = discretized Dirac equation Wilson, Kogut and Susskind, Naik,
Kaplan, Neuberger and Narayanan

Nta =
1

T
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Putting chemical potential on the lattice

In the Dirac equation the chemical potential enters as

M = ∂µγ
µ +m+ γ0µ.

This is like an imaginary scalar potential. Hence, chemical potential is put on the
lattice by multiplying each Euclidean-time link matrix by expµ.

Breaks time-reversal symmetry— distinguishes between particle and anti-particle.

As a result, detM is no longer positive, and the integral for Z cannot be done by
Monte-Carlo: the fermion-sign problem.

At RHIC/LHC µ small, hence µ = 0 approximation is good. Evaluating derivatives
at µ = 0 evades the fermion sign problem.
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Summary: statistical mechanics

1. The partition function, expectation values and response functions.

2. Fluctuations: distributions of extensive variables and response functions

3. The role of conserved quantities.

4. The lattice as a computational method: temperature and chemical potential in
QCD.

5. The fermion sign problem.
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Fluctuations in heavy-ion collisions

Consider conserved quantities— baryon number, electric charge and hypercharge.
In a microcanonical ensemble total charge is exactly conserved. But, pairs with
opposite charges can be created at a point and move apart. This transport gives
rise to local fluctuations. In a canonical ensemble, fluctuations in charge are due
to exchange of particles with the reservoir through transport.

By the fluctuation formulae one finds that〈
(∆B)2

〉
S

=
V χBT

S
=

χBT

(S/V )

is dimensionless. Approximate computations show large difference between two
phases: in the QGP this ratio is 0.01, factor 2 larger in the HG.

Asakawa, Heinz, Muller, PRL 85, 2072: 2000
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Jeon, Koch, PRL 85, 2076: 2000
Practical problem— (∆Q)2/S is small. Solution— comparing

R =
N+

N−
and F =

Q

Nch

=
N+ −N−

N+ +N−

one finds: (∆R)2 = 4(∆F )2.
Fluctuations of ratio dominated by fluctuations of smaller quantity
(margin). Therefore—

(∆F )2 =
(

∆Q
Nch

)2

,

and finally,

Nch(∆F )2 = 4
(∆Q)2

Nch

,

where the rhs is the dimensionless ratio already seen.

A
=

X Y
,

∆
A A

=
∆

X X
−

∆
Y Y

or

√ ( ∆
X X

) 2 +
( ∆Y Y

) 2
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Thermal fluctuations in heavy-ion collisions

For an ideal massless quark-gluon plasma one has

S

V
= (7NcNf + 4(N2

c − 1))T 3π
2

45
and χB =

Nf

9
T 2

This gives—

V χBT/S V χQT/S V χY T/S
Nf = 2 0.014 0.034 —
Nf = 3 0.016 0.032 0.032

More accurate determination requires the lattice.

Shuryak’s suggestion— many kinds of coloured bound states in the plasma.
Koch’s remark— then they show up in the ratio χT/S.
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Energy fluctuations

In the same way, fluctuations of energy depend on cV . Energy is also locally
conserved, and the fluctuations are transported. The transport is ineffective if the
viscosity is high, and local fluctuations can be measured.

More usually, a microcanonical definition is used. Since particle multiplicities are
large, a temperature, T , can be fitted to the spectrum on an event by event basis.
Then fluctuations of the spectrum are given by

〈(∆T )2〉 = 〈T 〉2cV

Stodolsky, PRL 75, 1044: 1995

Caveat: watch out for local hot spots, jets, infrequent heavy particle production
and decay. Subtract flow.
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Chemistry fluctuations

The fluctuations in particle ratios such as

K+ +K−

π+ + π−
p+ p

π+ + π−
K+

π+

have been investigated experimentally.

In view of the above remarks about conserved charges, it may be more interesting
to look at hypercharge fluctuations—

(∆Y )2

N
=

χY T

(S/V )
=

〈
∆(p− p+K+ −K− + · · · )2

〉
〈π+ + π− +K+ +K− + p+ p+ · · · 〉
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Summary: thermal fluctuations

1. Fluctuations of charge and baryon number
give information about QCD which can be
compared with exact computations.

2. Fluctuations of energy are harder to do,
since there are many more sources of energy
fluctuations: PHENIX pursuing vigorously.

3. Fluctuations of particle ratios are
interesting, but hard to compute from QCD.
Fluctuations of hypercharge, Y , can be
compared with computation.
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Lattice predictions for fluctuations

1. Equation of state of quark matter: new results.

2. Quark chemical potentials appear in the Lagrangian but the quantities that
need to be computed are hadronic response functions. Simple transformations
and some notation.

3. Continuum results in quenched QCD for flavour related fluctuations at
vanishing chemical potential. Corrections for finite chemical potential and
stability with respect to quark masses.

4. Energy fluctuations in the continuum limit of quenched QCD: new results.
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Equation of state
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The speed of sound
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The entropy of the plasma
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Notation: chemical potentials for quarks

Introduce a µf for each quark flavour f . Then the quark number density is

nf =
(
T

V

)
∂ logZ
∂µf

, χf =
(
T

V

)
∂2 logZ
∂µ2

f

, χfg =
(
T

V

)
∂2 logZ
∂µf∂µg

.

SinceBQ
Y

 =
1
3

1 1 1
2 −1 −1
1 1 −2

UD
S

 = M

UD
S

 , we obtain

χB =
1
9

(2χu + χs + 2χud + 4χus) , χQ =
1
9

(5χu + χs − 4χud − 2χus) ,

χY =
1
9

(2χu + 4χs + 2χud − 8χus) , for mu = md.
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Continuum limit for quenched QCD

V χBT/S V χQT/S V χY T/S V χsT/S
1.5Tc 0.43 (1) 0.99 (2) 0.61 (1) 0.53 (1)
2.0Tc 0.47 (1) 1.07 (2) 0.71 (2) 0.71 (2)
3.0Tc 0.49 (1) 1.09 (3) 0.71 (3) 0.84 (3)

Gavai and SG, PR D 67, 034501: 2003

Dependence on quark mass unimportant if m� T : only strange quark mass
matters. The strange quark mass dependence of these results were also
investigated and found to be smaller than the error bars in the table above.

SG and R. Ray, PR D 70, 114015: 2004

Less than 5% corrections when dynamical quarks are used.
Gavai, SG, Majumdar, PR D 65, 054506: 2004
MILC collaboration,hep-lat/0405029
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Finite µB corrections

Since RHIC and SPS measurements are not made at exactly µB = 0, one can try
to estimate the corrections in a Taylor expansion of logZ—

χ(µ) = χ

[
1 + 6

(
µ/T

µ∗/T

)2

+O
(
µ4
)]
.

A lattice computation found µ∗/T ≈ 4.7 in the range 1.5 ≤ T/Tc ≤ 3. Since
µ/Tc ≤ 0.06 at RHIC, the correction to the µ = 0 result is about one part in
thousand: less than the statistical error in χ.

Gavai and SG, PR D 68, 034506: 2003
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Energy fluctuations
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Gavai, SG, Mukherjee, PR D 71, 074013: 2005

Conformal theory has cV = 4ε/T , where ε is the energy density of the plasma.
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Summary: lattice results

1. High accuracy results for χB,Q,Y,s in quenched QCD obtained at µ = 0 and
realistic values of the quark masses. Insensitive to changes in the quark mass,
realistic changes in µ and unquenching (last change affects up to 5%).

2. High accuracy results for cV obtained in quenched QCD. New computations
with unquenching in progress.

3. All measures of fluctuations (except χs) rapidly approach ideal massless gas
value above 2Tc, and are in agreement with perturbation theory there. Closer
to Tc, there are strong deviations from the ideal gas value. χs begins to
approach the ideal value only after 3Tc.

4. Since S = (ε+ P )/T approaches ideal gas value much slower, the AHM
measure V χT/S is about 33% above the ideal gas estimate for T ≥ 2Tc.

Jammu/S. Gupta: May 2005 to plan, Lecture 1, (S, S, S) Lecture 2, (S, S, S) Lecture 3, (S, S, S) Lecture 4, (S, S) summary. 50



Lecture 3: Slicing up phase space

1. The language of multi-particle distributions and a demonstration that
multi-particle correlations miss some of the physics we need.

2. Measuring cV and a look at the methods which would see the canonical energy
fluctuations: Φ, F and Σ.

3. Measuring other fluctuations and considerations of the remaining fluctuation
measures: νdyn and D.
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Single particle inclusive distributions

If n particles of type c can be produced in a reaction with cross section σn
c , then

one defines the inclusive cross section

σincl
c =

∞∑
n=1

nσn
c = 〈nc〉σc, where σc =

∞∑
n=1

σn
c .

Experimentally, one measures the momentum and energy of particles of type c,
and builds the invariant distribution function—

f(p) = E
d3σincl

c

dp3
, giving

∫
d3p

E
f(p) = σincl

c = 〈nc〉σc.

Bÿckling and Kajantie, Particle Kinematics, John Wiley, 1973
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Multi-particle distributions

Generalize to k-particle inclusive distributions, f(p1, p2, · · · , pk)—

∫ k∏
i=1

d3pi

Ei
f(p1, · · · , pk) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)σn
c

= 〈n(n− 1) · · · (n− k + 1)〉σc = σk−incl
c .

Here we imagine a detector recording the energy and 3-momenta of k particles of
type c. The accumulation of such observations builds up the joint distribution
function f(p1, · · · , pk).

The factorial moments in the expressions on the right come from the fact that if
we choose k particles out of n, the number of ways of doing this is the factor—

nPk =
n!

(n− k)!
= n(n− 1) · · · (n− k + 1).
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Multi-particle correlations
If the particles are produced independently, then the k-particle inclusive
distribution is the product of k single-particle distributions. The k-particle
correlations are defined by similarly subtracting out all the lower order correlations
from the k-particle distribution—

c1(p1) = f(p1)

c2(p1, p2) = f(p1, p2)− c1(p1)c1(p2)

c3(p1, p2, p3) = f(p1, p2, p3)− c2(p1, p2)c1(p3)− c2(p1, p3)c1(p2)

−c2(p2, p3)c1(p1)− c1(p1)c1(p2)c1(p3), · · ·

The properties of ck are obtained by constructing measures which are zero if ck
vanishes. The ck are important in trying to understand the full dynamics of QCD.
They contain information on both non-thermal and thermal fluctuations.
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Fluctuations and correlations

average

y

dN
dy

one event

Rapidity distributions give a typical example of multiparticle correlations which
could be seen as event-to-event fluctuations. The correlation function is

c2(y1, y2) = 〈∆(y1)∆(y2)〉 , ∆(y) =
dN

dy

∣∣∣∣
y

−

〈
dN

dy

∣∣∣∣
y

〉
,

where the angular brackets denote averaging over events.
Fluctuations can remain even if correlations vanish.
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Gaussian fluctuations

If c2 = c3 = · · · = ck = 0, then fk =
∏
c1. Let E = E1 + E2 + · · ·+ Ek be the

total energy; the distribution F (E) is—

F (E) =
∫ k∏

i=1

[
d3pi

Ei
f(pi)

]
δ

(
E −

∑
i

Ei

)

=
∫ k∏

i=1

[
d3pi

Ei
f(pi)e−ixEi

]
eixEdx =

∫
dx
[
f̃(x)

]k
eixE

Note that f̃(x) = 1 + 〈Ei〉x+ 〈(∆Ei)2〉x2/2 + · · · , since it generates cumulants.
So fk = 1 + 〈E〉x+ 〈(∆E)2〉x2/2k + · · · , which gives the central limit theorem.
This tells that E is distributed as a Gaussian. Note that the fact that E is
extensive was crucial to this proof.

Gaussian fluctuations can be physical and not just part of experimental errors.
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Ideal gases or normal thermal fluctuations

1. At a normal point (away from all phase transitions) thermal fluctuations of
extensive quantities are Gaussian. missed

2. Even an ideal gas has a specific heat, and therefore supports Gaussian
fluctuations of extensive quantity. missed

3. At a second-order phase transition the correlation length of the order parameter
become infinite and some non-Gaussian fluctuations could be observed.

4. At a first order phase transition, there are Gaussian fluctuations within each
phase; but non-Gaussian fluctuations could be observed if the system is large
enough to support multiple domains.
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Health Warning

Event-by-event fluctuations
are not to be treated as HBT
or multi-particle correlations.

Fluctuations 6= fluctuations
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Measuring cV

Φ
,
F

,
Σ

,
ν
,
D

:
ω

Specific heat could be measured through fluctuations of pT , ET or event-by-event
fits of a temperature, T . We discuss the following measures of such canonical
fluctuations—

1. The measure Φ used by NA49

2. The quantity F used by PHENIX

3. The variable Σ used by CERES

4. The measure needed but never used.

and a measure of the micro-canonical fluctuation.
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The Φ measure

Φ
,
F

,
Σ

,
ν
,
D

:
ω

Let x be some property of a particle. Define δx = x− x where the bar is an
average over the single particle inclusive distribution. Clearly, 〈δz〉 = 0.

Using the N -particle inclusive distribution, define ∆x =
∑N

i=1(xi − x). Clearly
〈∆x〉 = 0. Now define

Φ(x) =

√
〈(∆x)2〉
〈N〉

−
√

(δx)2.

Gazdzicki and Mrowczynski, Z. Phys. C 54, 127: 1992
Φ(E) unrelated to cV because first term is N -particle σ normalized by N and the
second term is the single particle σ. By the central limit theorem then Φ(E) = 0
if there are no correlations: for example in an ideal classical gas. In a quantum
ideal gas one would expect to find small values of Φ(E): positive for bosons since
they all cluster together and negative for fermions since they seek different states.
Mrowczynski,nucl-th/9806089
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Generalized Φ measures

Φ
,
F

,
Σ

,
ν
,
D

:
ω

Generalization proposed—

Φn(x) =
(
〈(∆x)n〉
〈N〉

)1/n

−
(
(δx)n

)1/n

.

These are combinations of the n− th moments of the distribution and for n > 2
have no general thermodynamic or statistical significance. For symmetric
distributions of x some could have special significance near a critical point.

Mrowczynski,nucl-th/9905021

Example: Φ2(B) and Φ4(B), where B is the baryon number, might be useful to
pin down the effective potential near a QCD critical point.
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The F measure

Φ
,
F

,
Σ

,
ν
,
D

:
ω

In each event let x be the average value of x and N be the number of objects
over which the mean is taken. The event-to-event mean of x is 〈x〉 and the
variance is σ2(x) = 〈x2〉 − 〈x〉2. Next define

F =
ωdata − ωbaseline

ωbaseline
where ω =

σ(x)
〈x〉

.

where “baseline” refers to either an experimental system or a theoretical model.
PHENIX takes it as a mixed event sample.

If one defines d = ωdata − ωbaseline, then Φ = d〈x〉
√
〈N〉 = F

√
〈N〉σbaseline.

PHENIX, PR C 66, 024901: 2002

Since F is proportional to Φ, the two have the same problem: the relation to cV is
obscure.
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The variable Σ Φ
,
F

,
Σ

,
ν
,
D

:
ω

Define

Σ(x) = sgn[σ2
d(x)]

√
|σ2

d(x)|
x

, σ2
d(x) = σ2(〈x〉)− (∆x)2

〈N〉
where angular brackets are average over a single event, σ2 denotes variance over
all events, and bar is an average over the inclusive single particle distribution.

CERES,hep-ex/0305002
Voloshin, Koch, Ritter, PR C 60, 024901: 1999

Since Σ is proportional to Φ, the two have the same problem: the relation to cV is
obscure.
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The measure needed

Φ
,
F

,
Σ

,
ν
,
D

:
ω

• Since statistical fluctuations are the signal, always check whether ideal gas
gives a signal or not; methods which look only for correlations are unsuited for
normal thermal fluctuations.

• Canonical ensemble requires a heatbath: realize this experimentally by limited
acceptance: number of particles observed, Nobs much less than total number of
particles in the event (after removing resonance decay products).

• Canonical ensemble requires intensive variables to be fixed by thermostats;
realize this by a selection on centrality to keep the energy of the system +
heat-bath fixed.

• Normalization 〈Nobs〉 needed to convert from extensive quantity σ2(E) to
intensive quantity cV : control over σ(Nobs) needed.
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Microcanonical fluctuations

Φ
,
F

,
Σ

,
ν
,
D

:
ω

With an appropriate definition of T in a microcanonical ensemble, one has—

cV =
〈T 〉2

σ2(T )
.

One possible definition of micro-canonical T is total energy divided by the number
of degrees of freedom. Landau and Lifschitz, Statistical Physics

• To realize a micro-canonical ensemble full phase space should be accepted, or,
number of particles not detected much less than number detected.

• In order to ensure that energy is equidistributed among all degrees of freedom,
jetty events must be removed, resonance decay products must be merged or
removed, effect of flow must be taken into account. Volume must be controlled.

• After this, T could be assigned to an event either by fitting a functional form,
or by equipartition: see Korus et al., PR C 64, 054908: 2001 for an analysis.
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What are volume fluctuations?

Φ
,
F

,
Σ

,
ν
,
D

:
ω

The volume of the fireball is closely related to the volume of overlap of the two
initial nuclei. Bins in ET or bins in centrality are, roughly speaking, bins in the
volume of the fireball. If this bin is not very small, then the ratio 〈(∆V )2〉/〈V 〉2
could be significant.

Volume of overlap can be traded against number of binary collisions, Npair.

〈(∆V )2〉
〈V 〉2

=
〈(∆Npart)2〉
〈Npart〉2
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Summary: measuring cV

Φ
,
F

,
Σ

,
ν
,
D

:
ω

1. cV is due to statistical fluctuations of total multi-particle E in the
thermodynamical limit where the number of particles N is very large.

2. Methods designed to remove statistical fluctuations altogether are not useful in
measuring normal thermal fluctuations, although they may be useful in finding
phase transitions.

3. One needs to extract the statistical fluctuations in extensive quantities after
removing the effects of volume fluctuations.

4. The events from which fluctuations are obtained must be selected very carefully
to remove jets and processed with precision to delete flow effects and
reconstruct decayed resonances.
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Measuring other fluctuations

Φ
,
F

,
Σ

,
ν
,
D

:
ω

The main points about other fluctuations are the same: thermodynamical
fluctuations can be uncorrelated, and therefore fluctuation measures which remove
“statistical fluctuations” will miss thermodynamic information. They may still be
useful for looking at phase boundaries.

Some things which arose first in the study of charge fluctuations

1. the notion of robust measures of variance

2. the (defi)notion of νdyn

3. the Asakawa-Heinz-Müller (AHM) measure, D (also called ω)
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Robust measures of variance

Φ
,
F

,
Σ

,
ν
,
D

:
ω

Variance and covariances of quantities qα can be expressed in terms of
dimensionless ratios—

Rαβ =
〈qαqβ〉 − 〈qα〉〈qβ〉
〈qα〉 〈qβ〉

The advantage of using these is that detector efficiencies may cancel out of the
ratio.

Pruneau, Gavin, Voloshin,nucl-ex/0204011
Phys. Rep. 22 (Foa) and 27 (Whitmore)

Call the numerator Cαβ. The coefficient of covariance also has the same
property—

rαβ =
Cαβ√
CααCββ
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νdyn

Φ
,
F

,
Σ

,
ν
,
D

:
ω

νdyn = R++ +R−− − 2R+−

This is again a correlation measure, and hence insensitive to thermal fluctuations.
It can be shown that µdyn is proportional to Φ, and hence they have the same
problem.

If an AA collision is equivalent to Npart independent collisions, then it can be
shown that—

RAA
αβ =

RNN
αβ

〈Npart〉
+
〈(∆Npart)2〉
〈Npart〉2

, therefore νAA
dyn =

νNN
dyn

〈Npart〉
.

If there are final state interactions, then the effective number of independent
events decreases. Hence this scaling of νAA

dyn can be taken as an measure of
thermalization.
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Fluctuations show approach to thermalization

Φ
,
F

,
Σ

,
ν
,
D

:
ω

Note control over Npart, i.e., volume variations.
Westfall (STAR),nucl-ex/0404004
Note concordance with v2.
NA49,nucl-ex/0303001
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Reduced variance: the AHM measure

Φ
,
F

,
Σ

,
ν
,
D

:
ω

Asakawa-Heinz-Müller propose

D ≡ ω =
4〈(∆Q)2〉

〈N〉

which has the property of being able to see thermal fluctuations. It was pointed
out that

D = D
∣∣
V

+
4(〈N+ −N−〉2

〈N+ +N−〉

(
〈(∆V )2〉
〈V 〉2

)
= D

∣∣
V

[
1 +
〈(∆V )2〉
〈V 〉2

]
and hence volume fluctuations may distort the signal.

Fix this using data.
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Slicing up the acceptance for D

Φ
,
F

,
Σ

,
ν
,
D

:
ω

It would be good to make the following analysis—

1. Select all events within the most central 10% bin.
2. In this set find D by slicing into thinner bins of width δb.
3. If the i-th bin gives Di, then define the mean

D(δb) =
P

i Nev
i DiP

i Nev
i

,

i.e., by giving weight proportional to the number of events, Nev
i , in that bin.

4. Plot D(δb) as a function of (δb)2 and extract the estimator D(δb = 0).

If weak or no dependence is seen, it means that the volume fluctuation term
〈(∆V )2〉/〈V 〉2 is under control. Otherwise, the intercept at δb = 0 is the correct
estimate of D. Restricting to the most central 10% also minimizes flow effects.
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Summary

Φ
,
F

,
Σ

,
ν
,
D

:
ω

• Φ, F , Σ and νdyn see only correlated fluctuations; therefore are not direct
measures of the quark number susceptibilities. However, when constructed with
the baryon number, they may be good probes of the phase boundary.

• νdyn is a probe of thermalization, and gives results in concordance with those
obtained using v2. The latter indicates that hydro sets in only at the highest
centralities. The former shows that the number of effective sources drops as
the number of participants rises. (Gavin) Both are relatively independent of√
S at fixed centrality.

• Since D (i.e., ω) is sensitive to the QNS, it is worthwhile trying to control this
measure further.

• An algorithm has been given to construct a quantity D(δb = 0) which is an
estimator of D corrected for volume fluctuations.
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Lecture 4: Transport and Balance

As the fireball expands and cools, does it
remember the fluctuations of early times?
If it does, then it is not in equilibrium: so
we need to study relaxation to equilibrium.
Lattice QCD gives the mean free path of
quarks. Balance functions can search for
this information.

1. Non-equilibrium statistical mechanics: transport coefficients and mean free
times; the liquid-like nature of the plasma and cross checks.

2. Balance functions and their uses.
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Non-equilibrium phenomena: transport coefficients

Charge susceptibility is the zero-momentum limit of the EM current correlator—

χq(T ) = − 1
2π

Π00(ω = 0, q → 0), Πµν(ω, q) = i
〈
TJEM

µ (q)JEM
ν (0)

〉
T

Unpolarized photon production involves the imaginary part—

(2π)3ω
∂7N

∂4x∂3q
=

e2

exp(ω/T )− 1
Im Πµ

µ(ω, q),

at lightlike momenta ω = |q|. The zero-momentum limit gives the electrical
conductivity—

σ(T ) =
1
6

∂

∂ω
Im Πi

i(ω,0)
∣∣∣∣
ω→0

where the sum is over spatial polarizations only.

A finite conductivity implies that the soft photon production rate vanishes.
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The electrical conductivity and mean free time

Lattice measurements show that

σ(T )

TCEM

= 7.5 ± 0.8, CEM = 4πα
∑
f

e2
f

A Drude formula relates this to the mean free time of quarks—

σ =
CEMSqτq

m

which then gives τq = 0.3 fm within 10% errors. The charge diffusion constant
can then be found using the kinetic theory formula—

D = τqc
2
s ≈ 0.1 fm

SG, PL B 597,57: 2004
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The quark-gluon liquid

From the lattice measurement, one can also construct τg ≈ 2τq and then use
kinetic theory to get η/S ≈ 0.21 to compare with the AdS/CFT prediction 1/4π.
If η and other transport coefficients are small, like in a nearly ideal liquid, then
diffusion coefficient is small, mean-free times are small, and systems relax quickly
to equilibrium.

A measure of liquid-like behaviour is the dimensionless ratio

` = τS1/3.

In a non-relativistic fluid this would measure the mean free path in units of the
interparticle spacing. For gases the values are large, for liquids, ` ' 1. In
perturbation theory, τ ∝ 1/Tg4 log(1/g), S ≈ 32π2T 3/45, and hence ` becomes
large, since g is small. In reality, for T ≈ 2Tc, S ≈ 4T 3, and hence ` = 0.81,
implying that the plasma is liquid-like.

SG, Pramana, 61, 877: 2003, (QCD 2002: IIT-K)
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Check all earth-shaking results

Small η/S implied by preliminary analysis of spectra and flow using blast-wave
approximation to full hydrodynamics. Check this—

1. Use second-order dissipative hydro to compute spectra and flow to check the
stability and extract a more accurate value of η. (See, for example, Chaudhuri,
Heinz,nucl-th/0504022)

2. Look for photon dimming, and use it to compute the value of σ. This should
have concordance with η. SG,hep-ph/0411355

3. Try to extract quark diffusion constant from fluctuation measurements. The
rapidity width of a charge fluctuation is ∆Y ≤ 2D/τc, for fluctuations created
at time τc. Fluctuations at early times should be seen in bins of small rapidity:
∆Y ≤ 0.4 for τc = 0.5 fm. Aziz, Gavin, PR C 70, 034905: 2004
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The balance function

Define the conditional probability that a particle of type b has momentum p2 if
also a particle of type a has momentum p1—

p(b, p2|a, p1) =
N(a, p1; b, p2)
N(a, p1)

.

The balance function is defined in terms of these conditional probabilities as—

B(p2|p1) =
1

2
[p(b, p2|a, p1) + p(a, p2|b, p1) − p(b, p2|b, p1) − p(a, p2|a, p1)] .

If b = −a and global charge is conserved, then the normalization condition is∑
p2
B(p2|p1) = 1. This can be checked by noticing that

1 =
∑

p2
[p(−a, p2|a, p1)− p(a, p2|a, p1), being the probability that if a is seen at

p1, then somewhere there is an excess of −a exactly sufficient to cancel that.
Bass, Danielewicz, Pratt, PRL 85,2689: 2000
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Understanding the balance function

,

C

B

A

−

+

+,

D p
2

p
2

p
1
−, p1

,

Let a and b be charges; then there are 4 types of events.
Clearly, A and C are mutually exclusive and B and D
are mutually exclusive. If µQ = 0, then we can write
p(B|A) + p(D|A) = p(B|C) + p(D|C) = P .
Using charge symmetry further, we can write

p(B|A) = p(D|C) = p(p2, p1) and p(D|A) = p(B|C) = q(p2, p1)

where p+ q = P. The balance function can be written as

B(p2|p1) = q(p2, p1) − p(p2, p1).

The “normalization condition” is the charge weighted probability, 1 =
∑

p2
(q − p).

If we write
∑

p2
P(p2, p1) < 1. to allow for neutrals, then the two normalizations

together imply the obviously wrong conclusion
∑

p2
p(p2, p1) < 0!
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Analyzing conditional probabilities

The conditional probabilities are p(B|A) = p(B&A)/p(A), so that,

∑
p2

P(p1, p2) =

∑
p2

[p(B&A) + p(D&A)]
p(A)

=

∑
p2
p[(B ∪D)&A]
p(A)

If B ∪D were independent of A, then the last expression would become∑
p2
p(B ∪D) < 1 (to allow for neutrals). However, global charge conservation

implies a correlation between the events, which is expressed as the normalization
of the balance function—

p(A) =
∑
p2

[p(B&A)− p(D&A)]

So the two conditions together imply
∑

p2
P(p2, p1) > 1, allowing both p and q to

be positive. However, at least one of them has normalization exceeding unity.
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A disagreement about the balance function

A suggested use of the balance function is to ask the following question: if one
sees a charge q at any point p1 in phase space, what is the probability that the
opposite charge is seen at a rapidity separation ∆y, i.e., compute B(∆y|p1). The
first estimate used an independent fragmentation model in the hadronic phase.
Bass, Danielewicz, Pratt, PRL 85,2689: 2000

The use of an absolute coordinate, p1, for one and a difference, ∆y, for the other
is questioned. Clearly, care is required, and proper Jacobian factors must be
included in order to do this, as they must be also to integrate over part of the
phase space for p2. But these are text-book problems.

The use of an independent fragmentation model in the hadronic phase has been
questioned. While this may be an useful starting point, years of hadron
phenomenology has indicated that this requires correction. In particular for a
sensitive tool like the balance function a more realistic model is needed.
Trainor,nucl-ex/0301122
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Hadronic balance function

It is more realistic to use a string model (such as Lund) which incorporates
event-by-event strong charge anti-correlations with a range ∆Y . A toy model with
rapidity range [−Y : Y ] and only short ranged correlations—

p(∆y, p1) =


1

∆Y

0
1

Y−2∆Y

and q(∆y, p1) =


0 (|∆y| < ∆Y ),
2

∆Y (∆Y < |∆y| < 2∆Y ),
1

Y−2∆Y (otherwise).

The balance function is also short ranged but can be negative

B(∆y|p1) =


− 1

∆Y (|∆y| < ∆Y ),
2

∆Y (∆Y < |∆y| < 2∆Y ),
0 (otherwise).

reflecting
Long range

short range

This structure will be lost in a dense medium. SG, Parikh, PL B 219, 354: 1989
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Signals of diffusion

Diffusion gives rise to charge anti-correlations. A toy model of diffusion can also
be built up in the same way as before—

p(∆y, p1) = 3

√
σ′

2π
e−y2/2σ′, and q(∆y, p1) = 4

√
σ

2π
e−y2/2σ,

where σ′ is related to χQ and σ to D, and σ � σ′ since the diffusion coefficient is
very small.

Multiple strings

Diffusion

∆

B

Y

String
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Two caveats

Limited acceptance changes the normalization,
∑

p2
B < 1, since a balancing

charge could lie outside the range of acceptance. Also, for B(∆y|p1), the
distribution in ∆y may not be uniformly covered if p1 lies near the edge of the
acceptance range.

,

C

B

A

−

+

+,

D p
2

p
2

p
1
−, p1

,

At finite chemical potential the system can no longer
be specified with just two conditional probabilities.
One has p(A) = 1/(exp[(E1 − µ)/T ]±) and similarly
for the other marginal probabilities, such as, p(B) =∑

A p(B|A)p(A).

When such considerations place a strong limitation on the use of the balance
function, it would be more useful to construct the correlation function directly.
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Star preliminary

Why the bump at small ∆y for the most central events? Not string effect, because
it doesn’t appear in peripheral events. Is it diffusion or an acceptance effect?
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Summary: balance function

1. Balance function defined to look at charge balance inside the acceptance range.
Useful only for µ = 0, when the average charge is zero, and for large
acceptance.

2. Balance function can be negative: single string fragmentation is an example.
Observed positive balance function then shows that dense matter is formed
(SG, Parikh, PL B 219, 354: 1989).

3. Could be used to measure diffusion constant of charges. Is there any evidence
for a short diffusion constant in the balance function? (STAR preliminary).

4. If indeed diffusion constant is small, then fluctuations can only be measured
from the time of chemical freeze out.
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Course summary

• Basic theory is well known: QCD. Experiments are now very precise.
• Why is there still no quantitative match between theory and experiment?
• Because experiments and theory talk about different things.
• Important to make sure that experiments measure what theory gives.

Create one baseline test of
non-perturbative QCD in heavy-ion collisions:

FLUCTUATIONS
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