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Plan

1. Near-equilibrium scales: (almost) “perfect fluids” have various consequences.

2. Fluctuations of conserved quantities: QCD results for susceptibilities and the
specific heat.

3. Some results on strange quarks

4. Higher order fluctuations: non-poissonian behaviour is not fishy.

5. The critical end point and the wing critical line in the QCD phase diagram
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Almost perfect liquid

In the context of heavy-ion collisions “perfect liquid” means zero η. Since η ∝ λ,
“perfect liquid” means vanishing mean free path. In thermal equilibrium λ = τcs,
so for perfect fluids relaxation time vanishes.

In toy models such as AdS/CFT, viscosity is non-zero but small so fluid is almost
perfect; λ and τ are finite but small. Consequences for other transport phenomena.

1. Soft photon production
2. Diffusion of conserved charges

Quenched QCD computations also indicate small λ: SG hep-lat/0301006,
Nakamura and Saito hep-lat/0406009
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Ultra-soft photon production

Photon mean free path: λγ = λ/CEM where
CEM = 4πα〈e2q〉 = 0.09(5/9) = 0.05.
In AdS/CFT λ ≈ 0.1 fm, hence λγ ≈ 2 fm!
In quenched QCD λγ ≈ 3 fm.
Effect exists for Eγ ≤ 500 MeV.

For perfect fluid, photon luminosity proportional to visible surface area of fireball.
For infinite λq, proportional to volume of fireball. Define contrast:

C =
N(y, φ)max −N(y, φ)min

N(y, φ)max +N(y, φ)min

The mean free path of photons can be deduced from a measurement of C.
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Frozen fluctuations

For perfect fluids fluctuations of conserved charges are frozen in, since diffusion
constant vanishes: instant thermal response for fluctuations followed by Bjorken
expansion. Hence one can look back at the thermal history of the fireball by
studying fluctuations as a function of acceptance window.

4



Fluctuations
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Weak coupling expansion: Blaizot, Iancu and Rebhan,
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Phys.Lett.B523:143-150,2001 Vuorinen, Phys.Rev.D68:054017,2003
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Ratios are robust
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Above Tc ratios of QNS are almost independent of lattice spacing, and insensitive
to quark masses (as long as m < T ).
Gavai and SG, PRD 73 (2006) 014004
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Other fluctuations
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Energy fluctuations
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Departure from ideal-gas behaviour even at the highest temperature.
Gavai, SG, Mukherjee, Phys.Rev.D71:074013,2005
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Quasiparticles: linkage of quantum numbers

Identify a particle by a complete set of quantum numbers. When there are many
conserved quantum numbers the problem is simple. Look at two quantum
numbers simultaneously— say U and D.

T = 0: whenever U = 1 is excited D = −1 is excited along with it.

T > Tc: when U = 1 is excited D = ±1 should be excited along with it if the
medium contains quarks. Otherwise, by observing what value of D is preferentially
excited, you find something about the quantum numbers of the excitations.

Similarly one could study the linkages U |B or U |Q, or D|B etc.

C(XY )/Y ≡ 〈XY 〉 − 〈X〉〈Y 〉
〈Y 2〉 − 〈Y 〉2

=
χXY

χY
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U and D are not linked
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Strangeness is carried by quarks
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Strange quark abundance
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Higher order fluctuations
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Global symmetries determine the phase diagram

Two flavours of light quarks: approximate SU(2)× SU(2) chiral symmetry, in the
limit broken spontaneously to diagonal SU(2), (pseudo) Goldstone bosons are the
(light pseudo-scalar) pions.

Five tunable parameters: T (temperature), µu and µd (two chemical potentials),
mu and md (two masses). Gibbs phase rule allows large order multi-critical points.

Order parameter for chiral symmetry restoration: 〈ψψ〉, tuned by changing T and
µ = (µu + µd)/2, excitations in this “radial” direction are heavy scalar mesons.

Order parameter for pion condensation: 〈ψγ5τ2ψ〉, non-zero value may be induced
by tuning isospin chemical potential µ3 = (µu− µd)/2, excitations in this direction
give a massless charged pion.
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The phase diagram

p

Q
C

D
 c

ri
tic

al
 p

oi
nt

Chiral critical point
"Tricritical" point

wing critical line

µ

mmπ ρ/

T/mρ

/m

Berges and Rajagopal
Halasz, Jackson, Schrock, Stephanov and Verbaarschot
1998

Section of the 5-d phase diagram along a surface of µ3 = 0 and mu = md: phases
distinguished by 〈ψψ〉. Other interestingly ordered phases at larger µ.
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The sign problem

Z = e−F (T,µ)/T =
∫
DU e−S

∏
f

detM(U,mf , µf)

where the Dirac operator is a lattice discretisation of M = m+ ∂µγµ.

• If there is a Q such that M† = Q†MQ, then clearly detM is real.

• Q = γ5 for µ = 0. Nothing for µ 6= 0. Monte Carlo simulations of Z fail.

• Thermodynamics remains valid, free energy is fine.
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Developing methods to work with the sign problem

• Reweighting: Simulate at some parameter set, reweight the Fermion
determinant (M , inside the path integral) to another parameter set. Fodor and
Katz (hep-lat/0104001) used density of states method, Bielefeld-Swansea
(hep-lat/0204010) used Taylor expansion of determinant.

• Analytic continuation: Find F and derivatives at some parameter set, make
analytical continuation of F (outside the path integral) to another parameter
set.
– Imaginary chemical potential: exp(iµ) like a U(1) gauge field, no sign

problem. de Forcrand and Philipsen (hep-lat/0205016), d’Elia and Lombardo
(hep-lat/0209146) used regular imaginary µ, Azcoiti et al (hep-lat/0409157)
extended to two couplings.

– Taylor Expansion of free energy: Gavai and SG (hep-lat/030301),
Bielefeld-Swansea (hep-lat/0305007)

18



The Taylor expansion of the pressure for 2 flavours

P (T, µu, µd) =
(
T

V

)
logZ(T, µu, µd)

P (T, µu, µd) = P (T, 0, 0) +
∑

nu,nd

χnu,nd

µnu
u

nu!
µ

nd
d

nd!

mu = md implies that χnu,nd
= χnd,nu,

for any µu = µd. One QNS is

χB(T, µB) =
∂2P (T, µu, µd)

∂µ2
B

∣∣∣∣
µu=µd=µB/3

χB(TE, µE
B) diverges in the infinite

volume limit: pseudo critical behaviour
at finite volumes. van Hove’s theorem /T

T

µ

V2

V1
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Evaluating fermion traces

Numerical estimates of traces are made by the usual noisy method, which involves
the identity I = |r〉 〈r|, where r is a vector of complex Gaussian random numbers.
We need upto 500 vectors in the averaging.
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Central value: measurement with exactly Nv vectors; bars: config-to-config
variation. Statistics of vectors (Nv) is the big issue. Statistics of configs secondary.
Bielefeld: Nv = 50–100, Mumbai: Nv = 400–500.
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Evaluating fermion traces

Distribution of each trace is Gaussian. Product of traces such as χ2222 strongly
non-Gaussian. Proof: For a Gaussian random number of unit variance

〈x2
i 〉 = 1, 〈x4

i 〉 = 3 implies
[
x4

i

]
≡ 〈x4

i 〉 − 3〈x2
i 〉2 = 0,

but for a product of independent Gaussian numbers v = x1x2 · · ·xn,

〈v2〉 = 1, 〈v4〉 = 3n implies
[
v4

]
= 3n − 3.

The distribution of v can be written down in closed form in special cases.

Central limit theorem applies: distribution of v is Gaussian (proof straightforward).
But to reduce the 4th cumulant to substantially below the 2nd, one needs
statistics � 3n. So, the number of vectors Nv � O(n3n).
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4th order NLS peaks at Tc
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χ22) near Tc. Similiar control of products of traces needed for all higher
susceptibilities in this region.

Proper choice of Nv crucial.
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Quark mass dependence

Radius of convergence: µ∗/T =
√
|2χ(2)

B /χ
(4)
B |.

Peak in χ40 implies decreasing radius of convergence. The radius of convergence
seems to be very sensitive to quark mass in a region near Tc. Interpolation to
mπ/mρ = 0.7 is consistent with the break point in Bielefeld-Swansea result.
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The wing critical line
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Radius of convergence
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Old Budapest results roughly consistent with our small volume analysis. A
threshold Lmπ ≈ 5 is needed to study the thermodynamic limit.
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The QCD critical end point
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Strong finite volume effect; strong quark mass effect. When Lmπ →∞,
a = 1/4T and mπ/mρ = 0.3 then TE/mρ ≈ 0.17 and µE/mρ ≈ 0.19.
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What to control in a reliable computation

1. Statistics of random vectors: Nv ' 400–700 required. One test: off-diagonal
higher order susceptibilities must be independent of lattice volume.

2. Statistics of configurations: secondary problem. All configurations should be
statistically independent, otherwise systematic effects. Measure autocorrelation
times (τ). Statistical errors: σ2

actual = (1 + 2τ)σ2
apparent.

3. Spatial volume: must be large enough to contain more than 5 Compton
wavelengths of the pion. Even larger if one wants to study critical indices.

4. Quark mass is crucial. State of the art is a quark mass such that mπ/mρ is
50% larger than the physical value.

5. Lattice spacing errors can be controlled using two computations at the same
mπ/mρ with two actions having different lattice spacing effects.
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Summary

1. Continuum limit of baryon number fluctuations predicted within approximately
5% accuracy. Similiar results for fluctuations of other conserved quantities.

2. Linkage studies can directly reveal the nature of the quasiparticles in the
fireball. Variables similiar to fluctuations.

3. Strangeness abundance predicted within 5% accuracy in equilibrium.

4. Non-Poisson component of fluctuations important near Tc and expected to
grow as one approaches the critical end point.

5. The critical end point may be accessible to energy scans at colliders.
Agreement between all lattice computations if one takes volume effects and
quark mass dependence into account.
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