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Plan

1. An introduction to the phase diagram of QCD and difficulties in computing it
numerically.

2. Finding the critical point of QCD: an outline of techniques, and the results.

3. Determining the nature of excitations in the plasma phase of QCD, i.e., the
fields in terms of which a simple effective theory may be written.

4. Constraints on the effective theory: crossover from chiral physics to a
dimensionally reduced gauge-Higgs system.
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Global symmetries and order parameters

Two flavours of light quarks: approximate SU(2)× SU(2) chiral symmetry, in the
limit broken spontaneously to diagonal SU(2), (pseudo) Goldstone bosons are the
(light pseudo-scalar) pions.

Five tunable parameters: T (temperature), µu and µd (two chemical potentials),
mu and md (two masses). Gibbs phase rule allows large order multi-critical points.

Order parameter for chiral symmetry restoration: 〈ψψ〉, tuned by changing T and
µ = (µu + µd)/2, excitations in this “radial” direction are heavy scalar mesons.

Order parameter for pion condensation: 〈ψγ5τ2ψ〉, non-zero value may be induced
by tuning isospin chemical potential µ3 = (µu− µd)/2, excitations in this direction
give a massless charged pion.
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The phase structure

"Tricritical" point

m

T

µ

Q
C

D
 c

ri
tic

al
 p

oi
nt

Chiral critical point

Berges and Rajagopal, Halasz, Jackson, Schrock, Stephanov and Verbaarschot: 1998

Section of the 5-d phase diagram along a surface of µ3 = 0: phases distinguished
by 〈ψψ〉. Other interestingly ordered phases at larger µ.

Special symmetry for mu = md— “tricritical” point is probably higher order. SG and

Ray, in progress
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The sign problem

Z = e−F/T =
∫
DU e−S

∏
f

detM(U,mf , µf) =
∫
DU e−S(T,µ)

where the Dirac operator is the staggered quark discretisation of M = m+ ∂µγµ.

• If there is a Q such that M† = Q†MQ, then clearly detM is real.

• Q = γ5 for µ = 0. Nothing for µ 6= 0.

• Monte Carlo simulations of Z fail.

• Special cases: µ pure imaginary, µ3, Nc = 2.
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Avoiding the sign problem

• Reweighting: Simulate at some parameter set, reweight to another. Fodor and
Katz (2001), Bielefeld-Swansea (2002)

• Imaginary chemical potential: exp(iµ) like a U(1) gauge field, no sign problem.
d’Elia and Lombardo (2002), de Forcrand and Philipsen (2002), Azcoiti et al
(2004)

• Taylor Expansion of free energy: Gavai and SG (2003), Bielefeld-Swansea
(2003)
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The Taylor expansion for 2 flavours

P (T, µu, µd) =
(
T

V

)
logZ(T, µu, µd)

P (T, µu, µd) = P (T, 0, 0) +
∑

nu,nd

χnu,nd

µnu
u

nu!
µ

nd
d

nd!

mu = md implies that χnu,nd
= χnd,nu,

for any µu = µd. One QNS is

χB(T, µB) =
∂2P (T, µu, µd)

∂µ2
B

∣∣∣∣
µu=µd=µB/3

χB(TE, µE
B) diverges in the infinite

volume limit: pseudo critical behaviour
at finite volumes. /T

T

µ

V2

V1
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Differential calculus by machine: 1

There are mechanical and (almost) fully programmable methods to take the
derivatives involved in a high-order Taylor series expansion of the partition
function with fermions and finding the most efficient way of programming the
Taylor coefficients.

Step 1

Relate the derivatives of logZ to the derivatives of Z. Trivially accomplished by,
e.g., the simple Mathematica program

chi[n , m ] := D[ Log[Z[u, d]], {u, n}, {d, m}],

or its generalization to a larger number of flavours. Notation used is

χnm = χ uu···︸︷︷︸
n times

dd···︸︷︷︸
m times
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Differential calculus by machine: 2

Step 2

Relate the derivatives of Z to fermion traces. As long as we work with equal mass
flavours, the fermion traces are flavour independent. Introduce the notation

Z10 = Z〈O1〉, O′
n = On+1.

Use the rule [detM ]′ = [expTr logM ]′ = TrM ′M−1 detM , to write

Z10 = Z01 =
∂Z

∂µf
=

∫
DUe−S TrM−1

f M ′
f .

Note: M ′ = γ0 and M−1 = ψψ, so TrM−1M ′ = ψ†ψ. S. Gottlieb et al., Phys. Rev. Lett., 59

(1987) 2247
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Differential calculus by machine: 3

Step 3

Use the chain rule to write down higher order derivatives in terms of the On and
their products. A diagrammatic representation of these quantities is possible, and
can be used to check the results. SG, Zakopane lectures, 2002

1 2 11

111 21 3

Example: Z60 contains O1122 with coefficient equal to the number of ways of
partitioning 6 objects into groups of 2 ones and 2 twos, i.e.,{

1
2

(
6
1

) (
5
1

)}
×

{
1
2

(
4
2

)}
= 45.
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Differential calculus by machine: 4

Step 4

The diagrams still have to be related to fermion traces. In the continuum this is
trivial because only M ′ = γ0 6= 0. On the lattice there are several more steps,
since arbitrary derivatives, M (p), exist. Introduce further notation

bn1 · p1 ⊕ n2 · p2 ⊕ · · · e = Tr
[(
M−1M (p1)

)n1
(
M−1M (p2)

)n2

· · ·
]
.

Then derivatives are given by the rule—

bn · pe′ = −nb1⊕ n · pe+ nb(n− 1) · p⊕ (p+ 1)e.

The chain rule is equivalent to making the derivative linear over ⊕.

Example: b1e = TrM−1M ′, and b1e′ = −b2 · 1e+ b2e.
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Differential calculus by machine: 5

Step 5

Numerical estimates of traces are made by the usual noisy method, which involves
the identity I = |r〉 〈r|, where r is a vector of complex Gaussian random numbers.
We need upto 500 vectors in the averaging.
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The histogram of O11 where χud = 〈O11〉. In the limit of infinite number of vectors the

histogram should be skew, a tail to the left and vanishing abruptly at zero.
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Differential calculus by machine: 6

Step 6

Optimisation of the computation of multiple traces reduces to an NP-complete
problem in computer science called the Steiner problem. Need 20 matrix
inversions to perform a single measurement of upto 8th order susceptibilities.

M   r
−1

r

M’M   r
−1

M"M   r
−1

M   M’M   r
−1 −1

M   M"M   r
−1 −1

M"M   M’M   rM’M   M’M   r
−1 −1 −1 −1

M’M   M"M   r M"M   M"M   r
−1 −1 −1 −1

(1) (2)

(2.1) (1+2) (2.2)
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Differential calculus by machine: 6
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Differential calculus by machine: 6

Step 6

Optimisation of the computation of multiple traces reduces to an NP-complete
problem in computer science called the Steiner problem. Need 20 matrix
inversions to perform a single measurement of upto 8th order susceptibilities.

(1) (2)

(2.1)
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The actual evaluation tree
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Note the accuracy checks built into the optimal computation.
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Fluctuations
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Weak coupling expansion: Blaizot, Iancu and Rebhan, Vuorinen
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The susceptibilities: sign fluctuations
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χ20 measures the spread of quark numbers in the real direction, and χ11 its spread
in the imaginary direction. Increasing ratio |χ11|/χ20 shows increasing severity of
the sign problem.
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Non-linear susceptibilties

A non-linear quark number susceptibility of order n is the derivative

χ
(n)
B =

∂nP

∂µn
B

and χnu,nd
=

∂nu+ndP

∂µnu
u ∂µ

nd
d

Now,

χ
(4)
B =

1
2

[χ40 + 2χ31 + χ22]

In terms of quarks, we have:

+ +

Flavour disconnected pieces are absent for free quarks, i.e., vanish when g → 0.
In a resonance gas one has vertices such as π+ + π− → π0 + π0 which allow the
flavour disconnected pieces to add up.
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Peaking at Tc
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Resolving the peak
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Peaks in other susceptibilties also found very close to Tc. Always in O22, O222,
O2222— i.e., quark line disconnected operators (Tr γ0Dγ0D)n.

R. V. Gavai and SG, PRD 72 (2005) 054007
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Quark mass dependence

Peak in χ40 etc., implies decreasing radius of convergence. The radius of
convergence seems to be very sensitive to quark mass in some region of T .
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With increasing order larger there is a slower approach to the infinite volume limit,
and a threshold Lmπ ≈ 5 is needed to study the thermodynamic limit.

22



Radius of convergence

Notation: If f(x) =
∑

n f2nx
2n then ρ2n =

∣∣∣ f0
f2n

∣∣∣1/2n

and r2n+1 =
√∣∣∣ f2n

f2n+2

∣∣∣

0

1

2

3

4

5

3 4 5 6 7 8 9

/T
B

µ

n
0

1

2

3

4

5

6

7

2 3 4 5 6 7 8

/T
B

µ

n

Old Budapest results roughly consistent with our small volume analysis.
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The QCD critical end point
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R. V. Gavai and SG, PRD 71 (2005) 114014

Strong finite volume effect; strong quark mass effect. When Lmπ →∞,
a = 1/4T and mπ/mρ = 0.3 then TE/mρ ≈ 0.17 and µE/mρ ≈ 0.20.
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Summary of phase diagram

1. Sign problem under reasonable control in QCD for T/mρ > 0.13.

2. Taylor expansion can be used to explore the phase diagram upto the nearest
singularity to the µ = 0 starting point.

3. Extrapolation to infinite volume has pitfalls: careful.

4. With a = 1/4T and mπ/mρ = 0.3 one finds TE/mρ ≈ 0.17 and
µE/mρ ≈ 0.20.

5. Strong dependence on quark mass, i.e., mπ/mρ.
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Quasiparticles: linkage of quantum numbers

Since there are many conserved quantum numbers the problem becomes simpler.
Look at two quantum numbers simultaneously— say U and D.

T < Tc: whenever U = 1 is excited D = −1 is excited along with it.

T > Tc: when U = 1 is excited D = ±1 should be excited along with it if the
medium contains quarks. Otherwise, by observing what value of D is preferentially
excited, you find something about the quantum numbers of the excitations.

Similarly one could study the linkages U |B or U |Q, or D|B etc.

C(XY )/Y ≡ 〈XY 〉 − 〈X〉〈Y 〉
〈Y 2〉 − 〈Y 〉2

=
χXY

χY

Gavai and SG, PRD 73 (2006) 014004
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Linkage is robust
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Above Tc ratios of QNS are almost independent of lattice spacing, and insensitive
to quark masses (as long as m < T ). Therefore linkage is a robust quantity above
Tc.
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U and D are not linked
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u and d can be carried by the same particle below Tc but not above Tc.
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Strangeness is carried by quarks
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CBS = −3C(BS)|S and CQS = 3C(QS)|S. Below Tc strange baryons are relatively
heavy and therefore sparse in the plasma, but kaons are not so heavy. Above Tc:
strange quarks.
Gavai and SG, Koch, Majumder, Randrup, PRL 95 (2005) 182301
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Glue sector: screening masses

Since gluons do not carry any global quantum numbers, one cannot apply the same
methods to examine gluon-sector quasi particles. Instead it is investigated through
screening masses of colour singlets: sometimes called “glueball” correlations.

z

x

y 1/T

JPC breaks down to MT C. Measure—

CMT C(z) ∝ exp[−zm(MT C)].
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Gluon sector screening masses (I)

Electric gluons at finite temperature have lattice quantum number 1−− and colour
quantum numbers. Colour singlet two gluon states have lattice quantum number
0++. Colour singlet three gluon states have lattice quantum number 1−−.
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Comparison with weak-coupling prediction (m/T ∝ g + · · · ) spoilt by scale
uncertainty. Datta and SG, Phys.Rev.D67 (2003) 054503
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Gluon sector (II)

Ratio of the two masses provides a test of whether weakly coupled gluons is a
valid picture. Less affected by scale uncertainties if g is small enough, since
m/m′ ∝ 3/2 + · · · .
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Works (qualitatively) at T/Tc ≥ 1.25. Fails below that.
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Summary of 2nd part

1. Immediately above the crossover, quark quasi-particles can be observed in the
QCD plasma. Linkage is usually visible in experiments— called particle id,
when single particles can be tagged in detector. In plasma need to use linkage
as defined.

2. Above 1.25Tc gluon quasi-particles visible in plasma. Since they carry no
conserved global (internal) quantum numbers, they are difficult to identify near
Tc.

3. There is emerging evidence of interesting structure in the gauge fields which
strongly influence the spectrum of the Dirac operator through the creation of
localized eigenstates of quarks.
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