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Plan

1. Quantum number susceptibilities, the Taylor expansion, and various scenarios
which limit the expansion.

2. Systematics of QNS/NLS— behaviour in the vicinity of Tc and mass
dependence; constraints on the effective theory.

3. Quasiparticle excitations in the plasma phase of QCD, i.e., the fields in terms of
which a simple effective theory may be written.
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Quantum number susceptibilties (QNS)

Nf chemical potentials in QCD: µu, µd, etc.. Sometimes need fluctuations in
some other conserved quantum number corresponding to a global symmetry of
QCD. Generating functional is unchanged—

J = µTN = µTM−1MN = [(MT )−1µ]T [MN ].

where µ is a column vector of (quark) chemical potentials and N is a column
vector of quark number densities. Then

∂

∂µi
=
∂µf

∂µi

∂

∂µf
= (MT )fi

∂

∂µf
= Mif

∂

∂µf
.

In particular, for Nf = 2,

χB =
2
9
{χ20 + χ11}

Gavai and SG, Phys. Rev. D 73 (2006) 014004
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The Taylor expansion for 2 flavours

P (T, µu, µd) =
(
T

V

)
logZ(T, µu, µd)

P (T, µu, µd) = P (T, 0, 0) +
∑

nu,nd

χnu,nd

µnu
u

nu!
µ

nd
d

nd!

mu = md implies that χnu,nd
= χnd,nu,

for any µu = µd. One QNS is

χB(T, µB) =
∂2P (T, µu, µd)

∂µ2
B

∣∣∣∣
µu=µd=µB/3

χB(TE, µE
B) diverges in the infinite

volume limit: pseudo critical behaviour
at finite volumes. /T

T

µ

V2

V1

3



Taylor series breakdown

The Taylor series breaks down at distances where some obstruction is encountered.

1. Imaginary chemical potential— series coefficients of the expansion in powers of
µB will alternate in sign.

2. Isospin chemical potential— dependence on quark mass; effects should switch
on rapidly as the quark mass decreases. Quadratic response coefficients (QRC):
see talk by Ray. Examine the extended phase diagram.

3. Other possibilities when mu 6= md.

Find the full phase diagram for Nf = 2. There are 5 parameters: T , mu, md, µu

and µd. Gibbs phase rule implies varieties of multicritical behaviour.
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The restricted phase diagram

"Tricritical" point
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Chiral critical point

Berges and Rajagopal, Halasz, Jackson, Schrock, Stephanov and Verbaarschot:
1998

Part of the phase diagram restricted to symmetric 3-d parameter space with
mu = md = m and µu = µd = µB/3. Order parameter is 〈ψψ〉. Other
interestingly ordered phases at larger µ.
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Completed phase diagram
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Extending work by Son and Stephanov (2000) Klein, Toublan and Verbaarschot
(2003) Nishida (2003) Barducci, Casalbuoni, Pettini and Ravagli (2004).

(T ∗, µ∗) is a tetra-critical point (tri-critical if one considers the highly symmetric
case mu = md and µu = µd). A joins a penta-critical point for arbitrary mu,d.
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Current estimates

Current estimates are— TE/mρ ≈ 0.17, µE/mρ ≈ 0.19

1. The transition surface for pion condensation “leans back” in model
computations. Casalbuoni et al, Phys. Rev. D 69 (2004) 096004. In agreement
with this QRC’s indicate that mass dependence in the µ3 direction is larger in
magnitude SG and Ray, Phys. Rev. D D70 (2004) 114015

2. Since mπ/mρ = 0.31 (for this computation), we find TE/mπ ≈ 0.57 and
µE/(3mπ) ≈ 0.21 Pion condensation expected for µc

3/mπ ≥ 1 at finite T .
Even better for Bi-Sw, since they have larger mπ.

3. Chiral limit may be approached non-analytically. Argument worth following up.

4. At µE, the Taylor coefficients of χB all have the same sign.
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Fluctuations
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Quenched continuum (Mumbai), MILC a = 1/8T , Nf = 2, Mumbai Nf = 2
continuum extrapolation following quenched

Weak coupling expansion works above 2Tc: Blaizot, Iancu and Rebhan, Vuorinen,
Chakraborty, Mustafa and Thoma.
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The susceptibilities: sign fluctuations
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χ20 measures the spread of quark numbers in the real direction, and χ11 its spread
in the imaginary direction. Ratio χ11/χ20 measures severity of the sign problem.

In the region of interest, the sign problem is under reasonable control. Ambiguities
due to square root? Investigate QRCs of 〈ψψ〉, for example.

Golterman, Shamir and Svetitsky, hep-lat/0602026
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Non-linear susceptibilties

A non-linear quark number susceptibility of order n is the derivative

χ
(n)
B =

∂nP

∂µn
B

and χnu,nd
=

∂nu+ndP

∂µnu
u ∂µ

nd
d

Now,

χ
(4)
B =

1
2

[χ40 + 2χ31 + χ22]

In terms of quarks, we have:

+ +

Flavour disconnected pieces are absent for free quarks, i.e., vanish when g → 0.
In a resonance gas one has vertices such as π+ + π− → π0 + π0 which allow the
flavour disconnected pieces to add up.
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Peaking at Tc
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Resolving the peak
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Peaks in other susceptibilties also found very close to Tc. Always in O22, O222,
O2222— i.e., quark line disconnected operators (Tr γ0Dγ0D)n.

R. V. Gavai and SG, PRD 72 (2005) 054007
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Quark mass dependence

Peak in χ40 etc., implies decreasing radius of convergence. The radius of
convergence seems to be very sensitive to quark mass in some region of T .
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With increasing order larger there is a slower approach to the infinite volume limit,
and a threshold Lmπ ≈ 5 is needed to study the thermodynamic limit.
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Quasiparticles: linkage of quantum numbers

Since there are many conserved quantum numbers the problem becomes simpler.
Look at two quantum numbers simultaneously— say U and D.

T < Tc: whenever U = 1 is excited D = −1 is excited along with it.

T > Tc: when U = 1 is excited D = ±1 should be excited along with it if the
medium contains quarks. Otherwise, by observing what value of D is preferentially
excited, you find something about the quantum numbers of the excitations.

Similarly one could study the linkages U |B or U |Q, or D|B etc.

C(XY )/Y ≡ 〈XY 〉 − 〈X〉〈Y 〉
〈Y 2〉 − 〈Y 〉2

=
χXY

χY

Gavai and SG, PRD 73 (2006) 014004
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Linkage is robust
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Above Tc ratios of QNS are almost independent of lattice spacing, and insensitive
to quark masses (as long as m < T ). Therefore linkage is a robust quantity above
Tc.
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U and D are not linked
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u and d can be carried by the same particle below Tc but not above Tc.
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Strangeness is carried by quarks
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CBS = −3C(BS)|S and CQS = 3C(QS)|S. Below Tc strange baryons are relatively
heavy and therefore sparse in the plasma, but kaons are not so heavy. Above Tc:
strange quarks.
Gavai and SG, Koch, Majumder, Randrup, PRL 95 (2005) 182301
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Gluon screening masses
Since gluons do not carry any global quantum numbers, linkage cannot be used.
Investigated screening masses of colour singlets: sometimes called “glueball”
correlations.
Ratio of the two masses provides a test of whether weakly coupled gluons is a
valid picture. Less affected by scale uncertainties if g is small enough, since
m/m′ ∝ 3/2 + · · · .
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Datta and SG, Phys.Rev.D67 (2003) 054503
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...but not perturbation theory

Electric gluons at finite temperature have lattice quantum number 1−− and colour
quantum numbers. Colour singlet two gluon states have lattice quantum number
0++. Colour singlet three gluon states have lattice quantum number 1−−.
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Band includes scale uncertainty; non-perturbative contributions crucial. Helsinki
group
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Different effective theories

Many phases, many transitions, many effective theories ...

Near the chiral critical point, quarks cannot be integrated out of the theory. The
effective theory at this point is expected to be a bosonized theory involving the
pseudo-Goldstone modes. This is true whenever the quark mass is such that pions
are lighter than the lightest glueball.

Near the critical end point quarks are light degrees of freedom but the QCD
coupling is large. (Weak coupling computations of CEP are quantitatively
inadequate, as they are also for pressure, glue screening masses)

At very large temperature the Euclidean thermal field theory is expected to
contain Fermion modes with ω ≈ πT , and these modes can be integrated away,
leaving a dimensionally reduced theory with gauge fields (magnetic modes)
coupled to adjoint Higgs (electric modes).
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