New results in QCD at finite μ

Rajiv Gavai and Sourendu Gupta

ILGTI: TIFR

The QCD Critical Point INT Seattle July 28, 2008

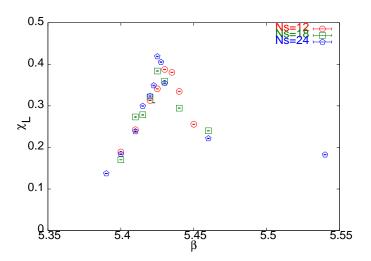
- 1 The finite temperature transition
- Quark Number Susceptibilities
- 3 Linkage
- The Critical End Point
- 5 Series sums and Padé resummations
- 6 Summary

Outline

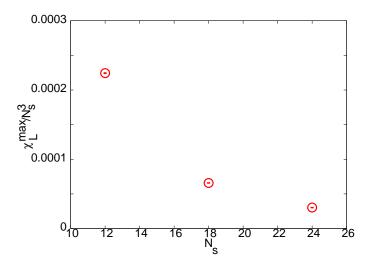
- 1 The finite temperature transition
- Quark Number Susceptibilities
- 3 Linkage
- 4 The Critical End Point
- 5 Series sums and Padé resummations
- 6 Summary

Crawling towards the continuum

- Before this year: state of the art lattice computations of physics at finite chemical potential used lattice cutoff $\Lambda=4\,T\simeq800$ MeV near T_c .
- Our earlier computation used $m_\pi \simeq 230$ MeV and spatial sizes with LT=2, 3, 4 and 6. This enabled extrapolation to the thermodynamic limit, i.e., $L\to\infty$.
- Now: new computations with $\Lambda = 6 T \simeq 1200$ MeV near T_c .
- m_{π} remains unchanged (230 MeV), but spatial volumes are somewhat smaller (LT=2, 3 and 4). No extrapolation to $L\to\infty$ yet.
- 20000–50000 configurations at each coupling; stochastic determination of traces with 500 random vectors on each configuration. (Gavai and SG, Phys. Rev. D 68, 2003, 034506.)


Algorithmic issues

- For $N_f=2$ simulations with staggered quarks we used R-algorithm. Most runs used trajectory length of 1 MD time unit and $\delta T=0.01$.
- Test case: $m/T_c=0.1$, 6×24^3 lattice. Changed δT from 0.01 to 0.001. No change in bulk quantities: plaquettes, Re L, quark condensate.
- For same test case, changed trajectory length from 1 MD time unit to 3 MD time units. No change in bulk quantities, but with longer trajectories autocorrelation lengths decreased so that CPU time taken for generating decorrelated configs decreased.


Locating the finite temperature cross over

- Cross-over coupling monitored using Polyakov Loop susceptibility: χ_L , an operator which enters fourth-order QNS: $(T/V)\langle O_{22}\rangle_c$, and an operator which enters eighth-order QNS: $(T/V)\langle O_{44}\rangle_c$. Measures consistent with each other within the precision of this work.
- For $m/T_c=0.1$, we find $\beta_c=5.425(5)$. Previous results bracketed this: for $m/T_c=0.15$ one had $\beta_c=5.438(40)$ (Gottlieb et al, PRL 59, 1987, 1513) and for $m/T_c=0.075$ it was found that $\beta_c=5.41-5.43$ (Bernard et al, PR D 45, 1992, 3854).
- Transition is not first order. Computations at larger volumes are required to distinguish cross over from second order transition.

Polyakov loop susceptibility

Not first order

Outline

- 1 The finite temperature transition
- Quark Number Susceptibilities
- 3 Linkage
- 4 The Critical End Point
- 5 Series sums and Padé resummations
- 6 Summary

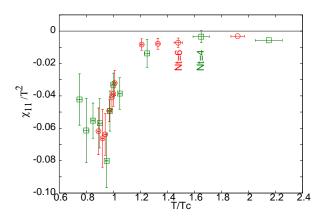
What is a QNS?

Taylor coefficient of the pressure in $N_f = 2$ QCD is

$$P(T, \mu_u, \mu_d) = \sum_{n_u, n_d} \frac{1}{n_u! n_d!} \chi_{n_u, n_d}(T) \mu_u^{n_u} \mu_d^{n_d},$$

and, since the two quark flavours are degenerate, $\chi_{n_u,n_d}=\chi_{n_d,n_u}$. Diagonal QNS have either $n_u=0$ or $n_d=0$. In two flavour QCD trade $\mu_{u,d}$ for $\mu_{B,Q}$. Then

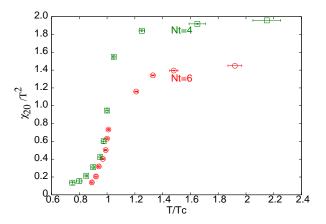
$$\chi_B = \frac{2}{9} (\chi_{20} + \chi_{11}) = 2\chi_{BQ}$$


$$\chi_Q = \frac{1}{9} (5\chi_{20} - 4\chi_{11}).$$

Transforming to μ_{B,I_3} , one has

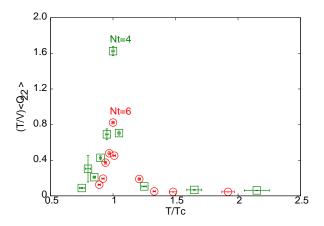
$$\chi_{Bl_3} = 0, \qquad \chi_{l_3} = \frac{1}{2} (\chi_{20} - \chi_{11}).$$

◆ロ ト ◆昼 ト ◆ 豊 ト ・ 豊 ・ りへで


Off-diagonal QNS

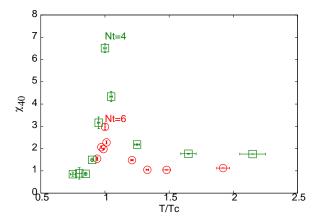
Sees only $\langle O_{11} \rangle$. No evidence for lattice spacing effects.

4 D > 4 D > 4 B > 4 B > B = 90 0


Diagonal QNS

Sees $\langle O_{11} \rangle$ and $\langle O_2 \rangle$. Second expectation value is cutoff dependent. Also, has a cross over. We look at its susceptibility $\langle O_{22} \rangle_c$ to identify T_c .

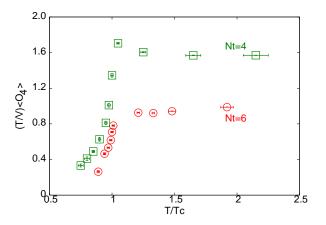
sg (ILGTI: TIFR) New results at finite μ INT 08 12 / 39


"Susceptibility" of QNS: $\langle O_{22} \rangle_c$ — 4th order QNS

Peak at the same coupling as peak of χ_L . Within the 1% precision of T/T_c , the two quantities peak at the same coupling. See Gavai and Gupta, PR D72 (2005) 054006.

Diagonal fourth-order QNS

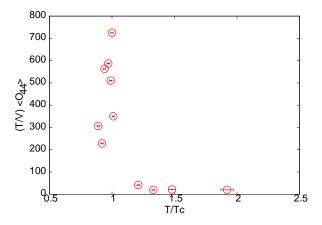
sg (ILGTI: TIFR)



Non-zero for $T > T_c$. Has contribution from $\langle O_4 \rangle$, which has non-vanishing value for the ideal gas.

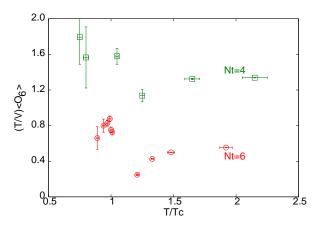
□ ▷ (률) (불) (불)
 □ ▷ (률) (불)

The operator O_4


(ILGTI: TIFR)

Rapid cross over from a small value in the hadronic phase to a non-vanishing value for the ideal gas.

New results at finite μ INT 08 15 / 39


"Susceptibility" of O_4 : $\langle O_{44} \rangle_c$ — 8th order QNS

This quantity peaks at the same coupling as χ_L and $\langle O_{22} \rangle_c$. Within the precision of our measurement there is no dependence of the cross over coupling on these observables.

sg (ILGTI: TIFR) New results at finite μ INT 08 16 / 39

The operator O_6 — 6th order QNS

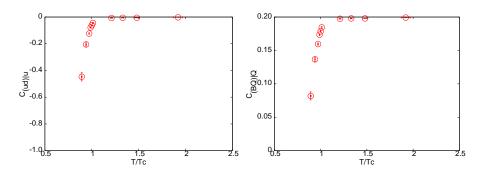
The operator expectation value $\langle O_6 \rangle$ has structure below T_c and hence its "susceptibility" cannot be used to probe the cross over coupling. Similar observation for $\langle O_8 \rangle$.

Outline

- 1 The finite temperature transition
- Quark Number Susceptibilities
- 3 Linkage
- The Critical End Point
- 5 Series sums and Padé resummations
- 6 Summary

Linkage between quantum numbers

ullet Linkage between quantum numbers F and G is


$$C_{(FG)|F} = \frac{\chi_{FG}}{\chi_F} = C_{(GF)|F}.$$

Measures amount of G excited per unit fluctuation in F. The quantities $C_{(FG)|F}$ and $C_{(FG)|G}$ not necessarily equal.

- $C_{(ud)|u} = -2/3$ at low temperature, since the pion is the lightest excitation, and at high temperature it vanishes. For $N_f = 2$ one has $C_{(ud)|u} = C_{(ud)|d}$.
- $C_{(BQ)|Q} = 0$ at low temperatures (pion is the lightest particle) and 1/5 at high temperature.
- $C_{(BQ)|B} = 1/2$ at all temperatures by definition.

Results

Quick cross over from hadron gas behaviour to quark gas behaviour. Rounding seen close to T_c . Finite-size effects need to be investigated: LT=4. Earlier computation with $N_t=4$ saw less rounding with LT=6.

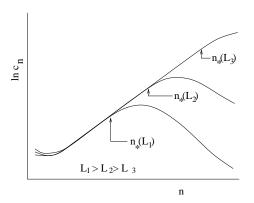
(ロ > 세례 > 세분 > 세분 > - 분 - 쒼익()

INT 08

Outline

- The finite temperature transition
- Quark Number Susceptibilities
- 3 Linkage
- 4 The Critical End Point
- 5 Series sums and Padé resummations
- 6 Summary

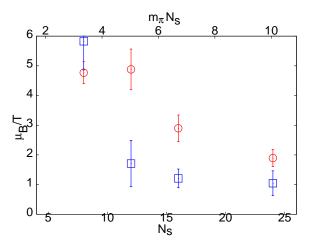
Finite size effects


- At critical point correlation length becomes infinite, appropriate susceptibilities diverge and free energy becomes singular ... in the infinite volume limit (van Hove's theorem).
- No numerical computation ever performed on infinite volumes.
- Deduce the existence of a critical point through extrapolations: finite size scaling (FSS) well developed for direct simulations.
- Example: peak of susceptibility scales as power of volume. Smaller effect: position of peak shifts from its infinite volume position by a different power of volume—

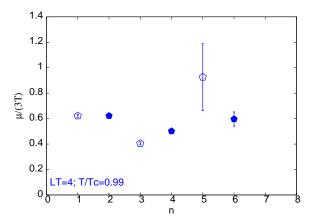
$$\chi_{max}(L) \propto L^p, \qquad T_c(L) = T_c - a/L^q, \qquad (p, q > 0).$$

• FSS not well developed for series expansions; some aspects are known.

(ロ) (리) (토) (토) (토) (이)(C

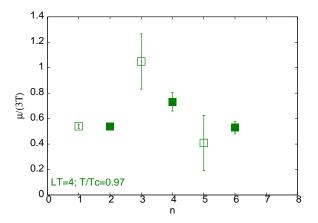

Series expansions

For a divergent quantity: $\chi(T, \mu_B) = \sum_n c_n(T) \mu_B^n$, the leading finite volume effects in the series coefficients.

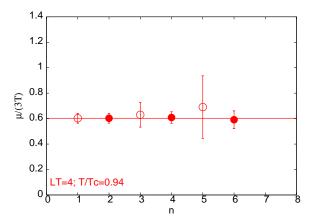

◆ロ → ◆部 → ◆き → き め へ ○

$N_t = 4$

At fixed $T/T_c \simeq$ 0.95. Circles: ratio of order 0 and 2; boxes: ratio of order 2 and 4. Gavai and SG, Phys. Rev. D 71, 2005, 114014.


$N_t = 6$: Radius of convergence

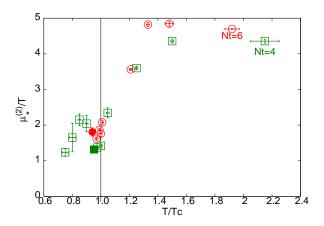
Filled symbols: $(\chi^{(0)}/\chi^{(n)})^{1/n}$. Open symbols: $\sqrt{\chi^{(n-1)}/\chi^{(n+1)}}$.


(ILGTI: TIFR) New results at finite μ 25 / 39

$N_t = 6$: Radius of convergence

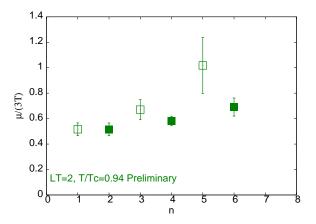
Filled symbols: $(\chi^{(0)}/\chi^{(n)})^{1/n}$. Open symbols: $\sqrt{\chi^{(n-1)}/\chi^{(n+1)}}$.

$N_t = 6$: Radius of convergence


Filled symbols: $(\chi^{(0)}/\chi^{(n)})^{1/n}$. Open symbols: $\sqrt{\chi^{(n-1)}/\chi^{(n+1)}}$.

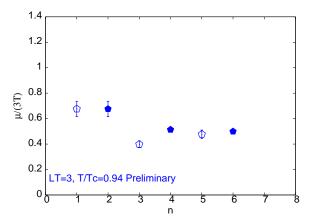
4□ > 4□ > 4 □ > 4

27 / 39

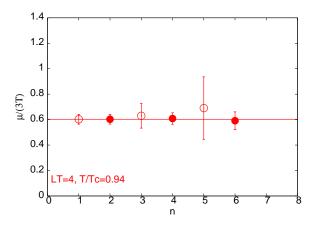

sg (ILGTI: TIFR) New results at finite μ INT 08

Radius of convergence

Lattice spacing dependence quantifies possible systematic errors.


$N_t = 6$: Finite size scaling

Filled symbols: $(\chi^{(0)}/\chi^{(n)})^{1/n}$. Open symbols: $\sqrt{\chi^{(n-1)}/\chi^{(n+1)}}$.


4□ > 4□ > 4 = > 4 = > = 990

$N_t = 6$: Finite size scaling

Filled symbols: $(\chi^{(0)}/\chi^{(n)})^{1/n}$. Open symbols: $\sqrt{\chi^{(n-1)}/\chi^{(n+1)}}$.

$N_t = 6$: Finite size scaling

Filled symbols: $(\chi^{(0)}/\chi^{(n)})^{1/n}$. Open symbols: $\sqrt{\chi^{(n-1)}/\chi^{(n+1)}}$.

Critical end point

- Multiple criteria agree:
 - Stability of radius of convergence with order and estimator
 - Pinching of the radius of convergence with T.
 - Smallest T where all the coefficients are positive.
 - Finite size effects roughly correct; more planned for the future.
- This gives

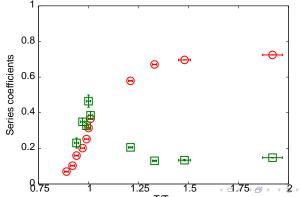
$$\frac{\mathsf{T}^{\mathsf{E}}}{\mathsf{T}_{\mathsf{c}}} = 0.94 \pm 0.01 \qquad \text{and} \qquad \frac{\mu_{\mathsf{B}}^{\mathsf{E}}}{\mathsf{T}^{\mathsf{E}}} = 1.8 \pm 0.1$$

with Nf=2 when $m_{\pi}/m_{\rho}\simeq 0.3$ at a finite volume with LT=4 and lattice cutoff of $a = 1/6T^E$.

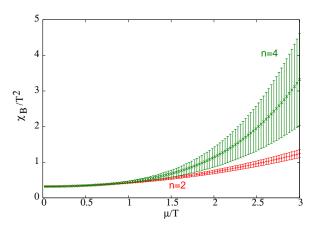
• For a lattice cutoff of $a = 1/4T^E$ at the same renormalized quark mass and on the same volume we had found a similar value for T^E/T_c and $\mu_P^E/T^E=1.3\pm0.3$. Extrapolation to $L\to\infty$ reduced this to 1.1 ± 0.1 .

INT 08

Outline

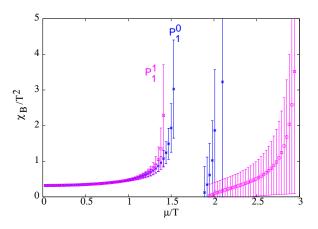

- 1 The finite temperature transition
- Quark Number Susceptibilities
- 3 Linkage
- 4 The Critical End Point
- 5 Series sums and Padé resummations
- 6 Summary

Fluctuations of Baryon number


Suggestion by Stephanov, Rajagopal, Shuryak; Asakawa, Heinz, Muller; Jeon, Koch

$$P(\Delta B) = \exp\left(-\frac{(\Delta B)^2}{2VT\chi_B}\right).$$

Extrapolate χ_B to finite chemical potential: peak at T_c ?



Sum the series

Summing the series never shows critical behaviour: sum is a polynomial and smoothly behaved. The sum peaks at T_c : incorrect (see SG, SEWM 2006).

Critical fluctuations

Use Padé approximants for the extrapolations: divergence at the critical end point (see Lombardo, Mumbai 2005). Error propagation requires care: see arXiv:0806.2233 [hep-lat].

Outline

- The finite temperature transition
- Quark Number Susceptibilities
- 3 Linkage
- 4 The Critical End Point
- 5 Series sums and Padé resummations
- **6** Summary

Summary 1: finite temperature

- Simulations of $N_f=2$ QCD (staggered quarks, Wilson action) with renormalized quark mass $m_\pi\simeq 230$ MeV with $1/a\simeq 1200$ MeV and LT=2, 3 and 4.
- ② Finite temperature cross over located at $\beta_c = 5.425(5)$, consistent with previous computations at neighbouring masses. Consistent measurements obtained with χ_L , $(T/V)\langle O_{22}\rangle_c$ and $(T/V)\langle O_{44}\rangle_c$ within precision of this computation.
- **3** Cutoff artifacts seen in many QNS. Surprisingly, measurements are more well-behaved at smaller lattice spacing (see χ_{60} and χ_{80} , for example).

Summary 2: finite chemical potential

• Very stable estimate of the critical end point: three criteria agree.

$$\frac{T^E}{T_C} = 0.94 \pm 0.01$$
 and $\frac{\mu_B^E}{T^E} = 1.8 \pm 0.1$

with lattice cutoff of $a=1/6T^E\simeq 1100$ MeV, compared to $\mu_B^E/T^E=1.3\pm 0.3$ at $a=1/4T^E\simeq 750$ MeV on the same spatial volume.

- Series extrapolation needs resummation: Padé approximants are one possible resummation.
- **3** Linkage between u and d quantum numbers disappears at $T \simeq T_c$ when $\mu_B = 0$. How abrupt? Requires finite size scaling.

