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On lattice

The sign problem

QCD is solved on (super) computers by evaluating the path integral

Z =

∫

∏

xν

dUxν exp[−SE (Uxν)], Uxν = exp

[

i

∫ x+aν̂

x
dyAν(y)

]

.

x: spacetime point, ν: directions. Continuum limit: number of points goes
to infinity, therefore infinite dimensional integral. Lattice cutoff, a → 0
using QCD beta function. But even at small a, many points; need to use
Monte Carlo techniques.
Works when SE real. Gauge part always real. Quark part? At zero µB one
finds det D real. Therefore Monte Carlo works. At finite µB additional
term µγ0 like complex gauge field. Hence exp[−SE ] complex. Monte Carlo
fails: fermion sign problem.
Sign problems everywhere: QCD at finite µ, Chern-Simmons theory, high
temperature superconductors, many nano-systems · · · . First solution in
QCD.
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On lattice

The method

Taylor expansion of the pressure in µB

P(T , µB) =
∑

n

1

n!
χ(n)(T )µn

B

has Taylor coefficients that need to be evaluated only at µB = 0 where
there is no sign problem. The baryon number susceptibility (second
derivative of P) has a related Taylor expansion

χB(T , µB) =
∑

n

1

n!
χ(n+2)(T )µn

B .

χB diverges at the critical point. Series expansion can show signs of
divergence. If all the coefficients are positive, then the divergence is at real
µB .
The method is perfectly general and can be applied to any theory. (Gavai,
SG, hep-lat/0303013).
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On lattice

The implementation

Our implementation is in Nf = 2 QCD using staggered quarks.

Light quark bare masses are tuned to give mπ = 230 MeV.

Currently our results from two cutoffs, Λ = 1/a ≃ 800 MeV (Nt = 4:
Gavai, SG, hep-lat/0412035) and 1200 MeV (Nt = 6: Gavai, SG,
arxiv:0806.2233).

Temperature scale setting performed by measuring the renormalized
coupling in three different renormalization schemes. At these cutoffs
different schemes give slightly different scales: 1% error estimated
from this source.

Lattice sizes of 4–6 fm per side near Tc : several pion Compton
wavelengths, several thermal wavelengths.

Simulation algorithm is R-algorithm. MD time step has been changed
by factor of 10 without any change in results.
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On lattice

Remaining issues

Series expansion carried out to 8th order. What happens when order
is increased? Intimately related to finite volume effects: next.

What happens when strange quark is unquenched (keeping the same
action)? Numerical effects on ratios of susceptibility marginal when
unquenching light quarks (Gavai, SG, hep-lat/0510044).

What happens when mπ is decreased? Estimate of µE
B may decrease

somewhat: first estimates in Gavai, SG, Ray, nucl-th/0312010.

What happens in the continuum limit? Estimate of µE
B may increase

somewhat: current results.

What if a different estimator of the critical point is used: must agree,
at least in the large volume limit (later figure).

Can the phase diagram be more complicated? Yes, we only find the
nearest critical point to µB = 0.
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On lattice

Critical end point

Multiple criteria agree:

Small window in T where all the coefficients are positive.
Stability of radius of convergence with order and estimator
Finite size effects follow correct trend; more planned for the future.
Pinching of the radius of convergence with T .

This gives TE/Tc = 0.94 ± 0.01 and µE
B/TE as below

Nt V = (4/T )3 V → ∞
4 1.3 ± 0.3 1.1 ± 0.1
6 1.8 ± 0.1 ?

Very naively: extrapolate to V → ∞ by same factor, extrapolate to
a → 0 as a2 (staggered quarks), then µE

B ≃ 325 MeV. Somewhat
lower at mπ = 140 MeV. Many assumptions, many caveats. May be
in the range µE

B=250–400 MeV with TE=165–175 MeV.
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In experiment

Gaussian Fluctuations

Fluctuations are Gaussian

At any normal (non-critical) point in the phase diagram:

P(∆B) = exp

(

− (∆B)2

2VTχB

)

. ∆B = B − 〈B〉.

Suggestion by Stephanov, Rajagopal, Shuryak: measure the susceptibility
by examining the Gaussian. Bias-free measurement possible: Asakawa,
Heinz, Muller; Jeon, Koch.

Why Gaussian?

At any non-critical point the appropriate correlation length (ξ) is finite. If
the number of independently fluctuating volumes (N = V /ξ3) is large
enough, then net B has Gaussian distribution: central limit theorem
(CLT).

SG (ILGTI: TIFR) CEP: lattice and experiment Patnitop 09 10 / 28



In experiment

Is the current RHIC point non-critical?

Answer

Check whether CLT holds.
Recall the scaling of extensive quantity such as B and its variance σ2,
skewness, S, and Kurtosis, K, given by

B(V ) ∝ V , σ2(V ) ∝ V , S(V ) ∝ 1√
V

, K(V ) ∝ 1

V
.

Caveat

Make sure that the nature of the physical system does not change while
changing the volume. Perhaps best accomplished by changing rapidity
acceptance while keeping centrality fixed. Alternative tried by STAR is to
change the number of participants.
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In experiment

STAR measurements

STAR Collaboration: QM 2009, Knoxville.
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In experiment

QCD interpretation of STAR analysis

Can we compare STAR’s measurements of σ70−80% and K70−80% with
lattice QCD?
Two questions to be answered before this is feasible:

1 Npart is a proxy for the volume. In changing this is the physics
unchanged? Do the fluctuations give initial information or
near-freezeout information? Need to develop a complete theory of
diffusion+hydro (Son and Stephanov, hep-ph/0401052, Bower and
Gavin, hep-ph/0106010, Bhalerao and SG, 0901.4677).

2 Have all other sources of non-Gaussianity have been subtracted out?
What about jetty fluctuations, for example? Need studies of
systematics.
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In experiment

What to compare with QCD

The cumulants of the distribution are related to Taylor coefficients—

[B2] = T 3V

(

χ(2)

T 2

)

, [B3] = T 3V

(

χ(3)

T

)

, [B4] = T 3Vχ(4).

T and V are unknown, so direct measurement of QNS not possible (yet).
Define variance σ2 = [B2], skew S = [B3]/σ3 and Kurtosis, K = [B4]/σ4.
Control all backgrounds in the measurements of [Bn]. Then construct the
ratios

m1 = Sσ =
[B3]

[B2]
, m2 = Kσ2 =

[B4]

[B2]
, m3 =

Kσ

S =
[B4]

[B3]
.

These are comparable with QCD (Table III of Gavai, SG, 2008).
Is there an internally consistent check that all backgrounds and

systematic effects are removed and comparison with lattice QCD
possible?
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In experiment

How to compare with QCD

m1

m

m2

3 Expts

QCD

µ

T

As T and µ are varied, the QCD predictions will lie on a surface in the
space of measurements (m1, m2, m3). If the data lies on this surface then
all non-thermal backgrounds are removed. Then a comparison with QCD
and a measurement of T and µ is immediate. Similarly for Q and S.

SG (ILGTI: TIFR) CEP: lattice and experiment Patnitop 09 15 / 28



In experiment

Finding a critical point

Near the critical point V /ξ3 ≃ 1: CLT breakdown, non-Gaussian
behaviour. Critical scaling—

χ(2) ∝ |µ − µE
B |−γ , χ(4) ∝ |µ − µE

B |−γ−2 (γ > 0).

The Kurtosis diverges:

K = −1 +
χ(4)

3[χ(2)]2
∝ |µ − µc |γ−2;

(since P = P0 + p|µ − µc |−γ+2 is non-analytic but non-divergent).
Fireball expansion rounds off the transition. Nevertheless, K ≃ ξ4

(Stephanov, 0809.3450). Along freezeout trajectory in an energy scan, the
microscopic Kurtosis is non-monotonic. In experiment look for
non-Gaussian E-to-E fluctuations.

SG (ILGTI: TIFR) CEP: lattice and experiment Patnitop 09 16 / 28



In experiment

One way to find the critical point

Construct E-to-E distributions of B, Q and S . Since there are
non-trivial linkages between them, comparison of the three
distributions is important. Construct distributions in limited
acceptance in order to simulate a grand canonical ensemble.

Issues related to missed particles, in particular uncharged baryons and
strange particles (neutrons and K 0). Require studies to see the effects
of these.

Observe the scaling of B, Q and S as a function of volume: if central
limit theorem, then normal point. Otherwise close to critical point.

Close to critical point the kurtosis does not scale with volume and
may become very large due to critical exponent effects.

Effect of hydrodynamic evolution needs to be included (next section).
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Transport coefficients

Hydrodynamics and Transport coefficients

Every hydrodynamic equation is a combination of a conservation law and a
constitutive equation. Simplest equations for diffusion:

∂n

∂t
= ∇ · J, J = −D∇ · n.

n conserved density, D diffusion coefficient: a transport coefficient.
This equation is not causal. Causal version obtained by introducing a
memory kernel—

τR

∂J

∂t
+ J = −D∇ · n.

New transport coefficient: τR , has interpretation of a relaxation time. τR ,
cs and D related in kinetic theory. Same relation arises in field theory as a
f-sum rule. SG 2007; Bhalerao, SG, 2009.
Causal diffusion equation behaves like an underdamped harmonic
oscillator. Long time limit same as usual diffusion equation: overdamped
oscillator. Similar phenomena in hydrodynamics. Much harder to observe.
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Transport coefficients

First order diffusion
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Usual intuition: diffusion destroys structure, the sharpest structures are
destroyed fastest.
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Transport coefficients

Transient amplification of the profile
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One draw from Gaussian random ensemble of initial conditions. Profile of
initial n same as for the first order example before.
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Transport coefficients

Main questions

Only two parameters τR and D. Much simpler than hydrodynamics,
but similar physics.

How large is τR? If τfo ≪ τR only normal diffusion is seen.
Experimental bounds?

What is the value of D? If measurable then first direct observation of
a transport coefficient.

Profiles not observable; too few particles.

Convert to event by event variables.
The power spectrum of the profile:

P(τf , k) =

∣

∣

∣

∣

∣

∣

Nt
∑

j=1

qje
−ikηj

∣

∣

∣

∣

∣

∣

2

,

sum over tracks j = 1, · · ·Nt . Each event gives one value of P(τf , k).
Draw E-by-E histogram for each k . Can be done for q = B, Q and S .
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Transport coefficients

Experimental signature
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Initial conditions: drawn from unit Gaussian.
Final distribution for k = 1/2.
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Transport coefficients

Experimental signature
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Transport coefficients

Experimental signature
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Initial conditions: drawn from unit Gaussian.
Final distribution for k = 2.
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Summary

Summary

1 Very naively: extrapolate to V → ∞ by same factor, extrapolate to
a → 0 as a2 (staggered quarks), then µE

B ≃ 325 MeV. Somewhat
lower at mπ = 140 MeV. Many assumptions, many caveats. May be
in the range µE

B=250–400 MeV with TE=165–175 MeV.

2 Observe the scaling of B, Q and S as a function of volume: if central
limit theorem, then normal point. Otherwise close to critical point;
then the kurtosis does not scale with volume and may become very
large due to critical exponent effects.

3 Transport effects can be controlled. Consistent theory of
hydrodynamics and diffusion can be constructed. The transport
coefficients can be constrained by measuring the power spectrum of
the number densities.
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Summary

Thank you for Patnitop
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