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The quantum problem

A quantum problem with Hamiltonian H is completely specified if
one can compute the unitary evolution operator

U(0,T ) = ei
∫ T

0 dtH(t)

There are path integral representations for this operator. All our
study starts from here.
The finite temperature quantum problem is completely understood
if one computes the partition function

Z (β) = Tr e−
∫ β

0 dtH(t),

which is formally the same problem in Euclidean time. The same
path integral suffices to solve this problem.
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A path integral is matrix multiplication

Define δt = T/Nt The amplitude for a quantum state |x0〉 at
initial time 0 to evolve to the state |xN〉 at the final time T can be
written as

〈αN |U(0,T ) |α0〉 =
∑

ψ1,ψ2,··· ,ψN−1

〈αN |U((N − 1)δt,T ) |ψN−1〉

〈ψN−1|U(δt, (N − 1)δt) |ψN−2〉 · · ·
〈ψ1|U(δt, 0) |α0〉 ,

where we have inserted complete sets of states at the end of each
interval. The notation also distinguishes between the states at the
end points and the basis states |ψi 〉 at the intermediate points.
This sum over all intermediate states is called the path integral.
The choice of the basis states |ψi 〉 is up to us, and we can choose
them at our convenience.
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A path integral

t t t tt0 1 i i+1 N

δt
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Choosing the basis states

If the basis states |ψi 〉 are eigenstates of the Hamiltonian then

〈ψi+1|U(ti + δt, ti ) |ψi 〉 = e−iEiδt/~δψi+1,ψi
.

The result looks trivial because the hard task of diagonalizing the
Hamiltonian is already done. In any other basis the path integral is
non-trivial.
By choosing position eigenstates as the basis, Feynman [1] showed
that the infinitesimal evolution operator for a single particle is
given by

〈x |U(0, δt) |y〉 = eiδtS(x ,y),

where S(x , y) is the classical action for a trajectory of the particle
which goes from the point x at time 0 to the point y at time δt.
For a spin problem one may use angular momentum coherent
states, for fermions Grassman coherent states. The results are
similar.
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Going to the diagonal basis

If V is unitary and V †HV is diagonal, then

U(0,T ) = V †





e−iE0T 0 · · ·
0 e−iE1T · · ·
· · · · · · · · ·



V .

The sum over intermediate states is diagonal, and the V s act only
on the initial and final states to give

〈αN |U(0,T ) |α0〉 = (α0
N)

∗α0
0e

−iE0T + (α1
N)

∗α1
0e

−iE1T + · · ·
−→ (α0

N)
∗α0

0e
−E0T , (Euclidean time t → −it),

when E1 > E0 and T (E1 − E0) ≫ 1. This gives the lowest
eigenvalue of H.
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Introducing the transfer matrix

The Euclidean problem over one lattice step in time is now phrased
in terms of the transfer matrix —

T (δt) = U(0,−iδt) = V †









e−E0δt 0 0 · · ·
0 e−E1δT 0 · · ·
0 0 e−E2δT · · ·
· · · · · · · · · · · ·









V .

Since T = exp[−δtH], the two operators commute, and have the
same eigenvectors. If the eigenvalues of T are called λi , then the
eigenvalues of the Hamiltonian are Ei = −(log λi )/δt.
If we are to recover a finite Ei when δt → 0, then log λ must go to
zero. The correlation length in the problem is ξ = 1/ log λ, so
this must diverge in order to give finite Ei . Therefore the
continuum limit corresponds to a critical point.
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Algorithm for computing energies

For a new formulation of quantum mechanics we have a trivial
algorithm for computing the energy. It exploits the simple fact that
given a randomly chosen unit vector |φ〉, the matrix element
〈φ|T n |φ〉 tends to λn0 as n → ∞.

1. Choose a source. At one time slice construct a random linear
combination of basis states: |φ0〉.

2. Choose a path configuration, i.e., a random |φj〉 on each
lattice site (jδt) with probability given by T . Construct a
measurement of the correlation function C0j = 〈φjφk〉.

3. Repeat step 2 as many times as feasible and construct the
mean 〈C0j〉 = 〈φ0|T j |φ0〉 (since |φj〉 are chosen with
appropriate weight, the mean suffices).

4. Plot log 〈C0j〉 against j . At sufficiently large j the slope gives
−E0δt. Alternatively, find a plateau in the local masses

mj = log(〈C0,j+1〉 / 〈C0j〉).
SG Introduction to LGT



Outline RG LGT Fermions Feynman Wilson Gauss Ising Bogoliubov Higgs Cite

A measurement of a correlation function

5 10 15 20 25 30
t

1

2

3

4

C

Correlation functions decrease monotonically because all
eigenvalues of T are positive (reflection positivity) as a
consequence of the unitarity of U.
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A measurement of a correlation function
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Correlation functions decrease monotonically because all
eigenvalues of T are positive (reflection positivity) as a
consequence of the unitarity of U.
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Quantum field theory

Quantum mechanics of a single particle is a 1-dimensional field
theory. The (Euclidean) Feynman path integral is

Z =

∫

Dx exp

[

−
∫ ∞

−∞

dt S(x)

]

,

where S is the action and the integral over an x at each time is
regularized by discretizing time.
We extend this to a quantum field theory in dimension D. If the
space-time points are labelled by x , and the fields are φ(x), then
the Euclidean partition function is

Z =

∫

Dφ exp
[

−
∫

dDx S(φ)

]

,

where S is the action density and the integrals may be regulated
by discretizing space-time.
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The lattice and the reciprocal lattice

In the usual perturbative approach to field theory, the computation
of any n-point function involves loop integrals which diverge.
These are regulated by putting a cutoff Λ on the 4-momentum.
When space-time is regulated by discretization, then the lattice
spacing a provides the cutoff Λ = 1/a.
We will take the discretization of space-time to be a regular
hypercubic lattice, with sites denoted by a vector of integers
x = aj. When fields are placed on such a lattice, φ(x), the
momenta are no longer continuous, but form a reciprocal lattice.

k =
2π

a
l,

where the l are integers. The physics at all points on the reciprocal
lattice are equivalent.

SG Introduction to LGT



Outline RG LGT Fermions Feynman Wilson Gauss Ising Bogoliubov Higgs Cite

Fourier transforms and the Brillouin zone

In practice our lattice will not be infinite, but a finite hypercube
with, say, ND sites. At each site, x , on the lattice, let us put a
complex number φ(x). We can put periodic boundary conditions,
φ(x) = φ(x + µ̂N). Next, we can make Fourier transforms

φ(k) =
∑

x

φ(x)eik·x , φ(x) =
1

ND

∑

k

φ(k)e−ik·x ,

where k = 2πl/N, and l have components taking integer values
between 0 and N or −N/2 and N/2. One sees that the boundary
condition allows components only inside the Brillouin zone, i.e.,
the region −π/a ≤ kµ ≤ π/a. Any k outside this is mapped back
inside by the periodicity of the lattice.
The completeness of the Fourier basis implies

1

ND

∑

x

e−iq·x = δ0q.
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The great unification

The renormalization procedure will be to take the continuum limit
a → 0 (i.e., Λ → ∞) keeping some physical quantity fixed, such as
a mass, m. If this is fixed in physical units, then in lattice units it
must diverge as a → 0. This corresponds to a second order phase
transition on the lattice.
A lattice field theory in Euclidean time and D dimensions of space
is exactly the same as a statistical mechanics on a D + 1
dimensional lattice. Here is the precise analogy—

Action ↔ Transfer matrix
Path integral ↔ Partition function
2-point function ↔ Correlation function
Continuum limit ↔ 2nd order phase transition
Unitarity ↔ Reflection positivity
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Phase transitions

Normal single phase behaviour, two-phase coexistence (first order
phase transitions), three-phase coexistence (triple points), critical
point (second order phase transitions).
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Divergences and critical exponents

Scaling of free energy at a critical point (Tc ,Pc)

F (T ,P) = paf

(

t

pb

)

p = P − Pc , t = T − Tc .

The scaling form implies power law divergence of the specific heat
(t−α), order parameter (t−β and p−δ) and order parameter
susceptibility (t−γ) at the critical point. There are various relations
between these critical exponents since the scaling form contains
only two exponents (see [3]).
Also there is scaling of the correlation function—

G (r ,T , p = 0) = r (2−d−η)g
( r

t−ν

)

.

At the critical point the correlation length diverges. The scaling
form implies that

ξ ∝ t−ν , G (r , t = 0, p = 0) ∝ 1

rη+d−2
.
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Coarse graining and the Renormalization Group

ξ If the correlation length of a system is ξ, then one can
try to define coarse grained variables by summing over
blocks of sites. When the block size becomes larger
than ξ, the problem simplifies.

A renormalization group (RG) transformation is the following—

1. Coarse grain by summing the field over a block of size ζa, and
scale the sum to the same range as the original fields. This
changes a → ζa.

2. Find the Hamiltonian of the coarse grained field which
reproduces the thermodynamics of the original system. The
couplings in the Hamiltonians “flow” g(a) → g(ζa) = g ′.

3. The flow follows the Callan-Symanzik beta-function

B(g) = −∂g
∂ζ
,

(note the sign). A fixed point of the RG has B(g) = 0.
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Linearized Renormalization Group transformation

Assume that there are multiple couplings Gi with beta-functions
Bi . At the critical point the values are G c

i . Define gi = Gi − G c
i .

Then,
Bi (G1,G2, · · · ) =

∑

j

Bijgj +O(g2).

Diagonalize the matrix B whose elements are Bij . In cases of
interest the eigenvalues turn out to be real.
Eigenvectors corresponding to negative eigenvalues are called
relevant operators, for positive eigenvalues, the eigenvectors are
called irrelevant operators, those with zero eigenvalues are called
marginal operators.
If an eigenvalue is y then the corresponding eigenvector v → ζ−yv

under an RG scaling by factor ζ. The eigenvalues are called
anomalous dimensions. Marginal operators correspond to
logarithmic scaling.
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Renormalization Group trajectories

Fixed points: ξ = 0 (stable) or ξ = ∞ (unstable).
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Renormalization Group trajectories

relevant

irrelevant

irrelevant

irrelevant

Fixed points: ξ = 0 (stable) or ξ = ∞ (unstable).
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Renormalization Group trajectories

critical surface

8(ξ=  )

Fixed points: ξ = 0 (stable) or ξ = ∞ (unstable).
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Renormalization Group trajectories

critical surface

8(ξ=  )

physical trajectory

Fixed points: ξ = 0 (stable) or ξ = ∞ (unstable).
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Probability theory as a trivial case of field theory

Generate random variables x with a probability distribution P(x).
We can always shift our definition of x so that 〈x〉 = 0.
It is useful to introduce the moment generating function

Z (j) =
∑

n

〈xn〉 j
n

n!
=

∫

dxexjP(x).

The derivatives of Z (j) give the moments. Now define the
characteristic function F (j) = logZ (j). The derivatives give
cumulants. We will use the notation

[

x2
]

=
d2F (j)

dj2

∣

∣

∣

∣

j=0

=
〈

x2
〉

− 〈x〉2 = σ2.

The Hamiltonian of statistical mechanics is analogous to
h(x) = logP(x). Then Z (j) is the partition function, and F (j) the
free energy. The derivatives of F give expectations of connected
parts; these are the cumulants.
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Coarse graining and the RG

Take a group of N random numbers, xi , and define their mean

Nx =
1

N

∑

i

xi .

The Nx are coarse grained random variables. A standard question
in probability theory is the distribution of these coarse grained
variables. Clearly this is a question in RG.
We need to compute the coarse grained characteristic function
FN(j). First,

ZN(j) =

∫

dNx eNxjδ

(

Nx − 1

N

N
∑

i=1

xi

)

N
∏

i=1

dxie
h(xi )

= [Z (j/N)]N . implies

FN(j) = NF

(

j

N

)

.
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The central limit theorem: a fixed point theorem

Since

F (j) = σ2
j2

2!
+ [x3]

j3

3!
+ [x4]

j4

4!
+ · · · ,

we find the RG flow gives

FN(j) =
σ2

N

j2

2!
+

[x3]

N2

j3

3!
+

[x4]

N3

j4

4!
+ · · · .

In the limit, since all the higher cumulants scale to zero much
faster, we find that the RG flows to the Gaussian fixed point

FN(j) = σ2j2/(2N). This is the content of the central limit

theorem.
Subtleties may occur if σ2 = 0, with extensions to the case when
all the cumulants up to some order are zero. Other subtleties arise
when the distributions are fat-tailed and all the cumulants diverge.
Other RG methods are needed for these special cases.
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Generating functions in field theory

Any integral with a non-negative integrand can be treated as a
D = 0 field theory. Some of the tricks one plays with integrals can
be generalized to field theories.
In any field theory it is useful to extend the path integral to a
generating functional of correlation functions—

Z [J] =

∫

Dφ exp
[

−
∫

dDx S(φ) + J(x)φ(x)

]

,

The connected parts of correlation functions are recovered as usual
by taking functional derivatives—

C (z , z ′) =
1

Z [J]

δ2Z [J]

δJ(z)δJ(z ′)

∣

∣

∣

∣

J=0

.

These are clear generalization of the notions of the moment
generating function and the characteristic function.
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The Ising model

The Ising model on a one-dimensional lattice contains a “spin”
variable, σi = ±1 at each site, i , of the lattice. The Hamiltonian is

H = −J

N
∑

i=1

σiσi+1.

We may put periodic boundary conditions on the lattice through
the condition that σN+1 = σ1. We write β = J/T .
This can be solved by introducing the transfer matrix [2]

T (β) =

(

eβ e−β

e−β eβ

)

.

Since Z (β) = TrTN , the eigenvalues of the transfer matrix
completely specify the solution. We find

Z (β) = 2N
[

(coshβ)N + (sinhβ)N
]

.

The system becomes ordered only in the limit β → ∞.
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Coarse graining and fixed points

However, we can also perform a coarse graining with ζ = 2. Since

T 2(β) =

(

2 coshβ 2
2 2 coshβ

)

=
√

2 coshβ

(

z 1/z
1/z z

)

,

where z =
√

(coshβ)/2. Expanding around β = ∞ one may
define the renormalized temperature as

β′ = β − 1

2
log 2 +O

(

e−4β
)

.

The fixed point is β → ∞, as expected. This is a repulsive fixed
point. At the other end, one has β′ = β2 +O(β4). Hence β = 0 is
another fixed point, which is attractive.

0

β

8

The RG flow for the 1-d Ising model is particularly simple.
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Power counting

Consider the relativistic quantum field theory of a single real scalar
field φ. The Lagrangian density, L, can be written as a polynomial
in the field and its derivatives. One usually encounters the terms

L =
1

2
∂µφ∂

µφ+
1

2
M2φ2 +

g3

3!
φ3 +

g4

4!
φ4 + · · ·

Let us count the mass dimensions of the fields in units of a length
L or a momentum Λ. Since the action is dimensionless,
[L] = L−D = ΛD . The kinetic term shows that

[φ] = L1−D/2 = ΛD/2−1.

The couplings have dimensions
[

M2
]

= L−2 = Λ2,

[g3] = L(D−6)/2 = Λ(6−D)/2,

[g4] = LD−4 = Λ4−D .
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The upper critical dimension

For each operator in the theory there is a certain dimension at
which the coupling is marginal. This is called the upper critical

dimension, Du. The coupling gr corresponding to the operator φr

has

Du =
2r

r − 2
.

The mass is a relevant coupling in all dimensions, g3 is relevant
below Du = 6, g4 below Du = 4. All other operators are irrelevant
in D = 4. Derivative couplings are relevant (the kinetic term is
marginal) in all dimensions.
Bogoliubov and Shirkov [5] set out power counting rules for
divergences of loop integrals. It turns out that for D > Du an
operator is unrenormalizable; at D = Dc the operator gives a
renormalizable contribution, and for D < Du the theory is
super-renormalizable.
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Field theory is not statistical mechanics

Divergences in statistical mechanics are due to long-distance
physics. In field theory they are due to short distance physics.
Therefore, in statistical mechanics it is the power of L which
counts. For field theory, it is instead the power of Λ which
determines which terms are important.
This is also reflected in the differences in the physical meaning of
RG transformations in the two cases. The critical point in
statistical mechanics is a point in the phase diagram where the
correlation length actually becomes infinite. In field theory the
critical point can be reached for any mass of the particle by scaling
the lattice spacing to zero (momentum cutoff to infinity).

irrelevant ↔ un-renormalizable
marginal ↔ renormalizable
relevant ↔ super-renormalizable
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Scalar Field Theory

The continuum Lagrangian for a single component real scalar field
theory can be easily written for the lattice

S = aD
∑

x

1

2a2

∑

µ

[φ(x + µ̂a)− φ(x)]2 +
1

2
m2φ2(x) + V (φ)

=
∑

x

M2φ2(x)−
∑

µ

[φ(x)φ(x + µ̂)] + V (φ).

In the first line we have replaced derivatives by the forward
difference, ∇, on the lattice, and kept dimensional variables
explicit. The notation is that x denotes a lattice site, µ one of the
D directions, µ̂ an unit vector in that direction and a the lattice
spacing. In the second line we have absorbed appropriate powers of
a into every variable, written out the expressions in dimensionless
units and then set a = 1. Note that M2 = D +m2a2/2.
By the earlier power-counting, it suffices to take V (φ) = g4φ

4/4!
in D ≥ 4.
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Notation for lattice theories

1. The lattice spacing will always be written as a except when we
use units where a = 1.

2. We will use the notation x , y , etc., to denote either a point in
continuum space-time, or on the lattice.

3. Fourier transforms on ND lattices are

φ(k) =
∑

x

φ(x)eik·x , φ(x) =
1

ND

∑

k

φ(k)e−ik·x , k = 2πi/N,

where reciprocal lattice points i have components taking
values between 0 and N or −N/2 and N/2. In other words,
the Brillouin zone contains momenta between ±π. The
completeness of the Fourier basis implies

1

ND

∑

x

e−iq·x = δ0q.

SG Introduction to LGT



Outline RG LGT Fermions Feynman Wilson Gauss Ising Bogoliubov Higgs Cite

Free scalar field theory

On a lattice of size ND the free theory, V = 0, can be completely
solved by Fourier transformation. The action becomes

S =
∑

k

1

2

[

m2 −
∑

µ

(1− cos kµ)

]

φ2(k).

Since the Fourier transform is an unitary transformation of fields,
the Jacobian for going from φ(x) to φ(k) is unity. Therefore, the
Fourier transformation gives a set of decoupled Gaussian integrals,
and

Z [β] =

∫

∏

k

dφ(k)e−βS =
∏

k

[

β

2
(m2 +

∑

µ

sin2
kµ

2
)

]−1/2

=
1

√

det β2 (∇2 +m2)
,

where ∇ is the forward difference operator.
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Low energy modes and Symanzik improvement

−π π

k

G(k)

When m = 0 the two-point function of scalar field
theory, G , vanishes at the center of the Brillouin zone
and is maximum at the edges. Inside the Brillouin zone
there is only one long distance mode when a → 0.

At small k one has G ≃ k2[1 +O(k2a2)]. Symanzik

improvement consists of improving the a-dependence at tree level
at finite lattice spacing by adding irrelevant terms to the lattice
action. For a scalar field, one can write

G (k) =
4

3
(1− cos kµ)−

1

12
(1− cos 2kµ) =

1

2
k2 +O(k6).

Hence, by removing the k4 terms, one has an improved action.
Clearly this is achieved by taking the forward difference and the
two-step forward difference with appropriate coefficients.
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The interacting theory

The standard form of the action for the scalar theory is

S =
∑

x

[

V (φ)− κ
∑

µ

φ(x)φ(x + µ̂)

]

, V (φ) = λ(φ2−1)2−φ2.

When the hopping parameter κ is large we may expand around
the free field limit. This is lattice perturbation theory. In the limit
when κ→ 0 we may make a hopping parameter expansion around
a solution in which the sites are decoupled.
When λ→ ∞ the field at the scale of the cutoff must sit at the
minimum of the potential, so the model looks like the Ising model.
From our earlier discussion, we expect that the critical exponents
of scalar field theory must be the same as that of the Ising model,
i.e., the two are in the same universality class.
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Monte Carlo simulations

In general the theory is investigated by Monte Carlo simulations.
The algorithm is the following—

1. Start from a randomly generated configuration of fields,
φ(x), on the lattice.

2. At one lattice site, x , make a random suggestion for a new
value of the field, φ′(x).

3. Make a Metropolis choice as follows. If the change in the
action, ∆S , due to the change in the field is negative, or
exp(−β∆S) is smaller than a random number r (uniformly
distributed between 0 and 1) then accept the suggestion.
Otherwise reject it.

4. Sweep through every site of the lattice repeating steps 2, 3.
5. At the end of each sweep make measurements of the

moments of the field variables.
6. Repeat from step 2 as many times as the computational

budget allows.
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Bosons in D = 2

λ

κ
magnetized

unmagnetized

g

critical surface

The theory of interacting bosons in D = 2 has a non-trivial critical
point corresponding to the Ising model. RG trajectories lying
anywhere on the critical surface are attracted to this. Since the
scalar field in D = 2 is dimensionless, an infinite number of
couplings, g , in addition to κ and λ, need to be tuned to get to it.
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Triviality of the Higgs in D = 4

λ

κ

unmagnetized

magnetized

critical line

In D = 4 the only attractive point on the critical surface has
λ = 0. Since all RG trajectories are attracted to λ = 0, close to
the continuum limit perturbation theory can be used to examine
the beta-function. (M. Luscher and P. Weisz, Nucl. Phys., B 290, 25,

1987).

SG Introduction to LGT



Outline RG LGT Fermions Feynman Wilson Gauss Ising Bogoliubov Higgs Cite

References

R. P. Feynman and Hibbs, The Path Integral and its

Applications, McGraw Hill.

R. J. Baxter, Exactly Solved Models in Statistical Mechanics,
Academic Press.

D. J. Amit and V. Martin-Mayor, Field Theory, the

Renormalization Group, and Critical Phenomena, World
Scientific.

G. Toulouse and P. Pfeuty, Introduction to the Renormalization

Group and its Applications, Grenoble University Press.

N. N. Bogoliubov and D. V. Shirkov, Introduction to the

Theory of Quantized Fields, Interscience.

SG Introduction to LGT



Outline RG LGT Fermions Yang-Mills Confinement Freedom Simulation Continuum

Outline

The path integral and the renormalization group
The path integral formulation
Field theory, divergences, renormalization
Example 1: the central limit theorem
Example 2: the Ising model
Example 3: scalar field theory
Bosons on the lattice
References

Lattice formulation of gauge theories
Wilson’s formulation of lattice gauge theory
Confinement in strong coupling
Gauge theories at high temperature
Monte Carlo Simulations
The continuum limit

Lattice Fermions
Putting fermions on the lattice
Fermion matrix inversions
References

SG Introduction to LGT



Outline RG LGT Fermions Yang-Mills Confinement Freedom Simulation Continuum

Notation for lattice theories

1. The lattice spacing will always be written as a except when we
use units where a = 1. When quantities with different
dimensions are equated, it will mean that each quantity is
made dimensionless by multiplying by appropriate factors of a
and a is set to 1. For example, 2π +m = 2π/a+m.

2. In contexts where there is no confusion, we will use the
notation x , y , etc., to denote either a point in continuum
space-time, or on the lattice.

3. If we need more clarity, then sites on the lattice will be
denoted by vectors of integers i, j, etc..

4. To specify links on the lattice, we need to specify the lattice
point x and a direction µ. Directions will be denoted by Greek
symbols µ, ν, etc.. Unit vectors in these directions will be
written as µ̂, ν̂, etc.. As a result, the nearest neighbours of x
are x + µ̂a.
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Notation for groups

1. Group indices are denoted by Greek symbols α, β, etc..

2. Generators of group algebra are denoted λα, and can be
represented by traceless Hermitean matrices. They satisfy the
algebra [λα, λβ] = ifαβγλγ , where f is called the structure
constant. An algebra element, A = Aαλα, is a linear
combination of the generators with Aα real.

3. Generators are normalized so that Tr (λαλβ) = δαβ/2

4. Members of the group are exponentials U = exp(iA). In the
representation where A are traceless Hermitean, U are unitary,
i.e., UU† = 1. For example, the Wigner D matrices are
representations of the rotation group O(3).

5. Characters of group elements are χr (U) = TrU, so they
depend on the representation, r . For example, for rotation
through a fixed angle, the traces of Wigner D matrices
depend on the angular momentum L.
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The center of a group

1. We define the center of a group to be those elements, z ,
which commute with all elements of the group, i.e., zU = Uz

for any U.

2. The center of a group is non-empty because the identity is
always a member of the center.

3. Since zU = Uz , we find that U−1z−1 = z−1U−1 for any U in
the group. So, if z is in the center then z−1 is also in the
center.

4. The center elements obey all other properties which a group
must have since they are elements of a larger group.

5. Hence the center of a group is an Abelian subgroup.
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What is a gauge field?

Minimal coupling of a gauge field Aµ = Aαµλα (λα are generators
of the gauge group) means that the momentum operator is

(pµ − eAµ)ψ = (i∂µ − eAµ)ψ.

So Aµ is involved in parallel transporting the wave-function by an
infinitesimal amount in the direction µ. A change in
Aµ(x) → Aµ(x) + ∂µf (x), i.e., a gauge transformation is
unphysical and can be absorbed into an equally unphysical phase
of ψ.
On a lattice there are no infinitesimal displacements. The
derivative operator is replaced by a finite difference. The parallel
transporter must be replaced by the analogous finite quantity. This
is the (group valued) link variable

Uµ(x) = exp(iaAµ).
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Gauge transformations

On a lattice we must now promote the algebra valued local gauge
function f (x) to a local group-valued field V (x) = exp[if (x)]. The
derivative of the function in a transformation means that we must
use the function at two points. An obvious generalization is

Uµ(x) → V (x)Uµ(x)V
†(x + µ̂a).

If we parallel transport a state across a path (x1, x2, · · · xN), where
xl+1 = xl + µ̂la, then the relevant field and its gauge transform
are—

U(x1, x2, · · · xN) =
N−1
∏

l=1

Uµl (xl) → V (x1)U(x1, x2, · · · xN))V †(xN).

If we go around a closed loop (x1 = xN) then the gauge
transformation is purely local. The trace of a closed loop
U(x1, x2, x3, · · · , x1) is then gauge invariant. These are the only
gauge invariant quantities that one can build.
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Some pictures
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Some pictures
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The Wilson action S = β
∑

x ,µ≤ν ReTr [Pµ,ν(x)− 1]

The Wilson action is written in terms of a plaquette, which is the
smallest loop on a hypercubic lattice—

Pµν(x) = U(x , x + µ̂a, x + µ̂a+ ν̂a, x + ν̂a, x)

= Uµ(x)Uν(x + µ̂a)U†
µ(x + ν̂a)U†

ν(x).

To leading order in a the exponents of Uν(x + µ̂a) and U
†
ν(x) give

the ∂µAν term. Using the Baker Campbell Hausdorff formula

exey = ex+y+[x ,y ]/2,

we recover the field commutators for non-Abelian fields. Putting
all of it together

Pµν(x) = exp
[

ia2∂µAν(x)− ia2∂νAµ(x) + a2[Aµ(x),Aν(x)] +O(a4)
]

.

The trace gives 1 + a4FµνF
µν +O(a6), thus reproducing the

continuum Yang-Mills’ action.
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The partition function Z (β) =
∫
∏

x ,µ dUµ(x) exp[−S ]

The integrals in the partition function are Haar integrals over the
gauge group. They are normalized and translation invariant so that

∫

dU = 1,

∫

dUU = 0,

∫

dUf (U) =

∫

dUf (UV ),

where V is a fixed group element. Under the Haar measure group
characters are orthogonal, i.e.,

∫

dUχ∗
p(U)χq(U) = δpq,

where p and q label representations, and the star denotes complex
conjugation. Given a complex valued function on the group, f (U),
we can perform harmonic analysis (Fourier transforms) on the
group

fr =

∫

dUχ∗
r (U)f (U).
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A strong coupling expansion

In the limit β → 0 one has exp(−S) → 1 so that Z = 1. The
strong coupling expansion consists of corrections around this
limit. This uses the following facts about group integrals—
∫

dUχr (U) = δr0,

∫

dUχr (VU)χs(U
†W ) = δrs

1

dr
χr (VW ),

where dr is the dimension of the representation r , and r = 0 is the
trivial representation, U = 1.
For a plaquette, P , we use the observation that

e−βP = c0(β)



1 +
∑

r 6=0

drar (β)χr (P)



 ,

where the functions ar can be computed, and the leading power of
β increases with r . We see that the only contributions to Z come
from closed surfaces of plaquettes.
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Other methods

Other methods available for dealing with the Wilson action are

1. An expansion around β → ∞, i.e., the weak coupling
expansion. Such a perturbation expansion on the lattice has
more vertices than the continuum expansion. As a result, high
order computations become difficult. The most important
result from lattice perturbation theory is the computation of
the beta-function. This gives a check on the universality of
the function up to two-loop order, and thereby a relation
between Λlat and ΛMS .

2. The preferred methods are numerical simulations, either the
Metropolis, heat-bath or over-relaxation methods. In a
numerical computation the lattice must be finite, say ND , so
that there are both infrared and ultraviolet cutoffs. As a
decreases, if the volume is unchanged in physical units, then
N must increase. So the number of degrees of freedom
increases as ND , leading to a rapid increase in computer time
requirements. SG Introduction to LGT
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Does QCD confine?

◮ You do not build new formulations in order to answer the
same old questions. The unanswered big question for
perturbation theory is whether non-Abelian gauge theories
confine. Wilson framed the question in terms of the potential
between two static quarks, V (r).

◮ In the 60’s it was discovered that the known Hadron spectrum
showed Regge behaviour, i.e., M2 ≃ J. This was shown to
be the spectrum that arises from a spinning string of finite
tension (although the string theory of hadrons was, and
remains, inconsistent).

◮ In the 70’s it was discovered that non-Abelian fields might not
spread out from a charge in Coulomb’s radial pattern, but
might collapse into a flux tube. In that case one might have
V (r) ∝ r , as for a string rather than the V (r) ∝ 1/r assumed
in perturbation theory.
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Static quark sources

A quark source couples to gauge field through the term

δS =

∫

dDxjµAµ →
∫

dDxδ(D−1)(x)A0 =

∫

dx0A0,

where the last result is obtained after taking the limit of a static
quark sitting at the spatial point x = 0 which has only the
component j0. After a Wick rotation to Euclidean space, this part
of the action reduces to a link in the time direction. The symmetry
of Euclidean rotations can then be used to rotate these into any
direction one chooses.
As a result, a static quark (or antiquark) source can be represented
in the lattice theory as a sequence of gauge fields U along the path
taken by the quark.
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Wilson loops

exp[−V (r)] =
lim

T→∞
〈

TrU(x , x + ẑ , · · · , x + ẑ r , · · · ,
x + ẑ r + t̂T , · · · , x + t̂T , · · · , x)

〉

=
lim

T→∞ W (r ,T ).
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Wilson loops
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Wilson loops

r

T
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Confinement and glueballs

If V (r) ∝ r then logW (r ,T ) ∝ rT . This is called the area law.
This is obtained at strong coupling because the expectation value
of a Wilson loop is proportional to the number of plaquettes it
contains. If each plaquette expectation value is p, then
W (r ,T ) ≃ prT .
The correlation function between colour singlet operators is
mediated by objects called glueballs. If − logW (r ,T ) ≃ σrT , i.e.,
the string tension is σ, then the correlation function of L2 sized
loops separated by distance r is given by

C (r , L) ≃ exp(−4σrL),

i.e., the glueball correlations fall exponentially, and the glueball
mass is 4σL.
This is not a proof of confinement for QCD because the strong
coupling phase does not have a continuum limit due to string

roughening.
SG Introduction to LGT



Outline RG LGT Fermions Yang-Mills Confinement Freedom Simulation Continuum

The strong coupling argument

Wilson loop

J.-M. Drouffe and C. Itzykson, Phys. Rep., 38, 133, 1978
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The strong coupling argument

J.-M. Drouffe and C. Itzykson, Phys. Rep., 38, 133, 1978
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The strong coupling argument

Wilson loop correlations

J.-M. Drouffe and C. Itzykson, Phys. Rep., 38, 133, 1978
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The strong coupling argument
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The strong coupling argument

J.-M. Drouffe and C. Itzykson, Phys. Rep., 38, 133, 1978
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Breakdown of the strong coupling expansions
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S. Datta and S. Gupta, Phys. Rev., D80, 114504, 2009

Comparison of the strong coupling expansion for the plaquette and
Monte Carlo measurements for SU(4) gauge theory on a 164

lattice. The strong coupling expansion seems to break down at
β ≃ 10. Fluctuations of the surface become unbounded.
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Gauge theories at finite temperature

The statistical mechanics of a gauge theory is examined by
evaluating the partition function with periodic boundary conditions
in the Euclidean time direction and sending the spatial size to
infinity (the thermodynamic limit). In practice one computes on
a Nt × ND−1

s lattice with T = 1/(aNt) and limit L = Nsa ≫ 1/T .
At finite temperature the action has a global symmetry under
multiplication of time-like links by any element of the center, of
the gauge group i.e.,

if U ′
t(x) = zUt(x), then S [U ′] = S [U].

To check this, note that if U → zU then U† → z−1U†. As a result
each plaquette is invariant, and hence the action is invariant.
If the center of the gauge group is non-trivial (i.e., contains more
than just the identity) then one can investigate whether this global
symmetry is broken or restored as the temperature changes.
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An order parameter for deconfinement

The free energy, F , of a single static quark is given by the
Polyakov loop

L = Tr
∏

l

Ut(x + t̂ l), e−F = Re 〈L〉 .

L does not go into itself under a center transformation and hence
can serve as an order parameter for the breaking of the center
symmetry. At T = 0 〈L〉 = 0, since a single static quark has
infinite free energy in the confined vacuum. However, if there is
deconfinement, then ReL may be non-zero. This is essentially what
happens above a transition temperature for deconfinement, Tc .

However, 〈L〉 = 0 identically because of the
center symmetry of the action. As a result, for
T > Tc , L can take several non-zero values, all of
which are center transforms of each other. The
sum over these vanishes.
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The equation of state

The classic method for computing the equation of state is to
obtain operators whose expectation values give thermodynamic
variables. The definitions are

E =
T 2

V

∂ logZ

∂T

∣

∣

∣

∣

V

, P = T
∂ logZ

∂V

∣

∣

∣

∣

T

.

These derivatives give combinations of plaquettes. Such operators
seem to have strong finite lattice artifacts.
As a result, this operator method is now superceded by the integral
method. In this new method, one uses the fact that

P =
T

V
logZ = P0 +

T

V

∫ β

β0

dβT 4∂ logZ

∂β
.

In addition, one uses the operator expression for E − 3P to obtain
the complete thermodynamics. (G. Boyd et al., Nucl. Phys., B469,

419, 1996).
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The Metropolis algorithm and acceptance rates

The Metropolis and Heat-Bath algorithms continually bring each
degree of freedom into equilibrium with its neighbours at a given
β. For every link with value U, one suggests a random new value
U ′ and accepts it with the Metropolis probability

p = min
[

1, eβ∆S
]

, where ∆S = S [U ′]− S [U].

Some measure of the distance between U and U ′, δ = |U ′ − U ′| is
tuned so that the acceptance rate in equilibrium, 〈p〉β , is around
80%. Extremely high or low acceptance rates mean that the
movement in configuration space is very slow. It would be an
useful exercise to measure 〈p〉β as a function of δ and try to find
invariance principles as the bare coupling, β is changed.
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The heat-bath algorithm

If all neighbours of a single link are kept fixed, while it is
repeatedly updated by Metropolis, then asymptotically it reaches a
certain “thermal” distribution. Heat-bath (HB) algorithms are set
up to sample this in one step.
For an Ising model if the spin of interest is s, and the sum over all
neighbouring spins is h, then the limiting probabilities are

p(s) =
e−βhs

2 coshβh
.

The Ising HB is simply to set s = ±1 with the above probabilities.
For the U(1) group there is an HB due to Bunk (B. Bunk,
unpublished), a fast HB specific to SU(2) (A. D. Kennedy and B. J.

Pendleton, Phys. Lett., B156, 393, 1985), and a method for extending
this to any SU(N) (N. Cabibbo and E. Marinari, Phys. Lett., B119,

387, 1982).
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Critical slowing down

The rate at which the whole lattice moves through configuration
space can be observed by a damage spreading exercise. (S. Gupta,
Nucl. Phys., B370, 741, 1992)
Make a copy of a configuration, C , and change it by a large
amount in exactly one link. Call this configuration C ′. Now
subject C and C ′ to Monte Carlo evolution and compare them at
the end of each sweep. The damage front is that region of the
lattice through which the difference between the two
configurations is much larger than δ. For the Metropolis and
Heat-Bath algorithms this spread is diffusive, i.e., the radius of the
damage front changes as

√
t. This means that measurements are

strongly correlated over time scales proportional to R2.
The damage front stalls when R ≃ ξ, so global (thermodynamic)
averages are correlated at time scales of the order of ξ2.
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The Over-Relaxation Algorithm

In the over-relaxation (OR) algorithm we move the link as much as
possible without changing the action, i.e., we solve S [U ′] = S [U]
for the new value, U ′. A new value is accepted with the probability
dU ′/dU, i.e., in the ratio of the Haar measures at the two points.
This ensures detailed balance. (OR)
Since OR does not change the action, one has to intersperse it
with an occasional heat-bath (HB) sweep. Typically one takes Nor

sweeps of OR per sweep of HB. A damage spreading computation
shows that the damage radius grows linearly with the number of
sweeps as long as Nor is of the order of the correlation length. (U.
Wolff, Phys. Lett., B288, 166, 1992)
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Renormalized couplings

The bare coupling of SU(N) gauge theory is given by g2
B = 2N/β.

The renormalized coupling, g , can be found by measurement of
some reference quantity on the lattice and using its perturbation
expansion to define g . This reference is often taken to be the
plaquette since it is easy to measure. (G. P. Lepage, P. B. Mackenzie,

Phys. Rev., D48, 2250, 1993)
Such a measurement gives g at the scale of a. As one changes β
one changes a and hence the renormalized coupling g2. The
beta-function measures the change in g2 with changing a. When a

is small enough, the renormalized coupling should be so small that
one can use 2-loop beta-function

a
dg

da
= −β0g3 − β1g

5.
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A strategy for testing the continuum limit

Integrating the 2-loop beta-function one has

aΛ = kR

(

1

4πβ0αS

)

, R(x) = e−x/2xβ1/(2β0).

Find the bare coupling, βc , at which a lattice with fixed Nt shows
the deconfinement transition. At this bare coupling a = 1/(NtTc).
Measure αS at this bare coupling. Then change Nt to N ′

t , measure
the new critical bare coupling, β′c and corresponding renormalized
coupling α′

S . The ratio of lattice spacings then gives

N ′
t

Nt
=

R[1/(4πβ0αS)]

R[1/(4πβ0α′
S)]

.

By increasing Nt in steps, one can find how small the lattice
spacing has to be before 2-loop scaling begins to work.
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Reaching the continuum limit

N

10

8

6

t

β 10.788 11.078 11.339

Τ

Τ

Τ

c

c

c

βc determined to one part in 104; αS from plaquette. 2-loop RG
works with precision of two parts in 103 for a ≤ 1/(8Tc). (S. Datta
and S. Gupta, Phys. Rev., D80, 114504, 2009).
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N
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8

6

t

β 10.788 11.078 11.339

Τ

Τ

Τ

c

c

c

c

Τc

Τ(4/3)

(4/5)

βc determined to one part in 104; αS from plaquette. 2-loop RG
works with precision of two parts in 103 for a ≤ 1/(8Tc). (S. Datta
and S. Gupta, Phys. Rev., D80, 114504, 2009).
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Reaching the continuum limit

1.308 (2)

0.804(3)
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6

t

β 10.788 11.078 11.339

Τ

Τ

Τ

c

c

c

c

Τc

Τ(4/3)

(4/5)

βc determined to one part in 104; αS from plaquette. 2-loop RG
works with precision of two parts in 103 for a ≤ 1/(8Tc). (S. Datta
and S. Gupta, Phys. Rev., D80, 114504, 2009).
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Euclidean Dirac Fermions in D = 4

The Dirac Hamiltonian in Euclidean D = 4 space-time, acting on
4-component Dirac spinors, Ψ(x), is

H = mβ − iαj∂j , where {β, αj} = 0, {αi , αj} = 2δij ,

the braces denote anti-commutators, and Latin subscripts run over
the three spatial directions. We choose β and αj to be Hermitean.
On the lattice we replace the derivative operator by the forward
difference as before, and find

H =
∑

x

mΨ†(x)βΨ(x)+
i

2

∑

j

[

Ψ†(x + ĵ)αjΨ(x)−Ψ†(x)αjΨ(x + ĵ)
]

.

Fourier transforms block diagonalize the Hamiltonian and give

H =
1

V

∑

k

ψ†(k)Mψ(k), where M = mβ +
∑

j

αj sin kj .
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Fermion doubling

These 4× 4 Dirac blocks can be diagonalized by noting that
M† = M and that MM† is diagonal. The eigenvalues are

Ek = ±
√

m2 +
∑

j

sin2 kj .

In the limit k → 0 one finds the correct dispersion relation
Ek = ±

√
m2 + k2. However, sin2 kj vanishes not only when kj = 0

but also at each edge of the Brillouin zone, i.e., kj = ±π.
Therefore, each corner of the Brillouin zone contains one copy of
the Dirac Fermion with the correct dispersion relation. This is
Fermion doubling.
Keeping the quadratic form H =

∑

xy Ψ
†(y)MΨ(x), the

degeneracy can be lifted by changing the Dirac operator M.
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Wilson fermions

Wilson suggested adding irrelevant terms to M, for example,

δM = 3rβδxy −
r

2
β
∑

j

(δ
x+ĵ ,y + δ

y+ĵ ,x),

with 0 < r ≤ 1. Diagonalizing again by using Fourier transforms
and the properties of the Dirac matrices, one has

E 2
k =



m + r
∑

j

(1− cos kj)





2

+
∑

j

sin2 kj .

For r in the above range, the degeneracies at the corners of the
Brillouin zone are lifted. The dispersion relation at small k is

E 2
k = m2 + (1 + 2mr)k2 +O(k4),

so that the corrections are of order a rather than a2. Symanzik
improvement becomes an important issue.
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Spin-diagonalization of fermions

The action, S , for fermion fields Ψ(x) is given by
∑

xy Ψ(x)M(x , y)Ψ(y), where the Dirac operator M is

M(x , y) = mδxy +
1

2

∑

µ

γµ(δx+µ̂,y − δx−µ̂,y ),

and γ0 = β and γk = −iγ0αk . We can make a change of variables
called spin diagonalization, Ψ(x) = A(x)ψ(x), where A(x) are
4× 4 unitary matrices such that

A†(x)γµA(x + µ̂) = ∆µ(x),

The choice A(x) = γx00 γ
x1
1 γ

x2
2 γ

x3
3 , where the xi are (integer)

components of x , gives a representation of Dirac matrices which
are multiples of identity—

∆µ(x) =
∏

i>µ

(−1)xi .
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Staggered (Kogut-Susskind) fermions

The transformed Dirac operator becomes

M(x , y) = mδxy +
1

2

∑

µ

αµ(x)(δx+µ̂,y − δx−µ̂,y ),

which is a multiple of the identity. Hence one can thin the degrees
of freedom and keep only a single component of the field at each
site. The 16 1-component fermions at the corners of the Brillouin
zone can be interpreted as 4 tastes of 4-component fermions. The
Dirac components have been distributed across 24 sites of the
lattice which collapse to a single point in the continuum.
In the limit m → 0 the field on the odd sublattice (

∑

µ xµ = odd)
connects only to that on the even lattice. Hence there is an exact
global U(1)× U(1) chiral symmetry

ψ(x ∈ odd) → Uoψ(x), ψ(x ∈ odd) → ψ(x)U†
e ,

and Uo and Ue interchanged on the even sublattice.
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Spin-flavour decomposition

Introduce lattice coordinates xµ = 2yµ + uµ where uµ = 0 or 1.
Quark fields can be defined as

qαa(y) =
1

8

∑

u

Γαa(u)ψ(2y + u), Γ(u) =
∏

µ

γ
uµ
µ .

Here the index α refers to flavour space and a to spin (Dirac).
Using the notation γ ⊗ σ for the direct product of a Dirac and
flavour matrix (tµ = γTµ ), ∇ for the forward derivative and δ for
the second derivative, we find

M

16
= m1⊗ 1 +

∑

µ

(γµ ⊗ 1∇µ − γ5 ⊗ t5δµ).

H. Kluberg-Stern, A. Morel, O. Napoli and B. Petersson, Nucl. Phys.,

B220, 447, 1983

In the a → 0 limit, the δµ term vanishes, and the chiral symmetry
is enhanced to U(4)× U(4).
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Some general considerations

The Fermion action is generally the quadratic form with a 4× 4
matrix M,

S =
1

V

∑

p

Ψ(p)M(p)Ψ(p),

where the inverse of M is the fermion propagator. The zeroes of
M correspond to the poles of the propagator, and give the particle
content of the action. Chiral symmetry implies that in the
massless case the transformation Ψ → exp(iαγ5)Ψ would lead to
M → −γ5Mγ5. In addition one has hypercubic (rotational)
symmetry and reflection positivity.
One makes the additional technical assumption of the locality of
M(x , y), which translates to a statement of F (p) falling sufficiently
fast at large p, so that the propagator is continuous. Then with
periodic (or anti-periodic) boundary conditions, M(p) must be
periodic on the Brillouin zone and therefore have 16 zeroes.
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No neutrinos on the lattice

The Nielsen-Ninomiya theorem states that if the lattice
Hamiltonian for Weyl fermions satisfies

1. translation invariance,

2. locality (the Fourier transform of the kernel has continuous
derivatives)

3. Hermiticity

4. any exactly conserved charges are local, have discrete
quantum numbers and have bilinear currents

then there are equal number of left-handed and right-handed
particles for every value of the charge.
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Why inversion?

Meson correlation functions are objects like

Cπ(x) =
〈

ψ(x)γ5ψ(x)ψ(0)γ5ψ(0)
〉

=
〈

Tr γ5M
−1(0, x)γ5M

−1(x , 0)
〉

.

Since one cannot program Grassman valued sources efficiently, one
cannot write down local operators whose correlators will be
saturated by meson states. Instead, every fermionic measurement
requires finding the inverse of the Dirac operator.
There are fast matrix inversion methods which scale as the third
power of the size of the matrix, N. However, since the size of the
Dirac operator is proportional to the number of sites on the lattice,
these generic methods are too slow for the fermion problem.
Instead one utilizes the fact that the Dirac operator is very sparse
(since it is essentially a first derivative operator).
Sparse matrices can be dealt with very efficiently, for example
inverting a tri-diagonal matrix is linear in N.
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Changing the problem

The fastest way to solve Ax = b is the conjugate gradient (CG)
algorithm, if A is Hermitean and positive definite (M is not, but
M†M is, so we solve M†Mx = M†b instead of Mx = b). What we
actually do by the CG is to solve the equivalent problem of
minimizing f (x) = x†Ax/2− b†x + c . This approach follows
Shewchuk’s wonderful introduction [5].
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0

5
-5

0

5

0

50

100

The quadratic form plotted here is obtained with
b = (0, 0), c = 0 and

A =

(

4 1
1 4

)

.

The solution of Ax = 0 is x = (0, 0), which is where the minimum
lies. The eigenvalues of A are 5 and 3, the eigenvector
corresponding to the former is v5 = (1, 1)/

√
2 and to the latter is

v3 = (1,−1)/
√
2.
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The steepest descent method

We will construct an iterative process which will be stopped as
soon as the solution, x i , is good enough for use. The error is
ǫi = x∗ − x i where x∗ is the solution and the residual is
r i = b − Ax i . Clearly, r i = Aǫi . Importantly, r i = −f ′(x i ), so the
residual is the direction of the steepest descent.
The method of steepest descent is simple. If one has reached x i

then, by the above argument, x i+1 = x i + αr i . The value of α is
chosen to reach the minimum along a line, i.e., f ′(x i+1) · r i = 0.
For the quadratic form, one has

0 = r i · (b − Ax i+1) = r i · (r i − αAr i ), so α =
r i · r i
r i · Ar i .

Finally, we have r i+1 = b − Ax i+1, and the recursion is completely
set up. Matrix-vector multiplication (MvM) twice per iteration!
Using p = Ar i and r i+1 = r i − αp, MvM once per iteration.
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Convergence

If the eigenvectors of A are vk (assumed normalized) with
eigenvalues λk , then we can write

ǫi =
∑

k

ξkvk , r i = Aǫi =
∑

k

ξkλkvk .

Using this expansion in eigenvectors, we can write

α =

∑

k ξ
2
kλ

2
k

∑

k ξ
2
kλ

3
k

.

The recursion relation for r i then gives

ǫi+1 =
∑

k

ξk(1− αλk)vk , r i+1 =
∑

k

ξkλk(1− αλk)vk .

Defining ||v ||2 = v .Av , we find

||ǫi+1||2 = ||ǫi ||2ω2 where ω2 = 1− (
∑

k ξ
2
kλ

2
k)

2

(
∑

k ξ
2
kλ

3
k)(
∑

k ξ
2
kλk)

.
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The conjugate directions algorithm

In the steepest descent method our search direction was r i . We
switch to a set of mutually conjugate pi , i.e., pi · Apj = δij . Taking
the iteration x i+1 = x i + αpi , the minimization condition becomes
r i+1 · pi = 0. As a result, one finds

αi =
pi · r i
pi · Api =

pi · Aǫi
pi · Api .

Note that ǫi+1 = ǫi − αpi . Does the iteration converge in N steps?
Decompose ǫ0 =

∑

ξkdk . Since pk are mutually conjugate, we find

ξk =
pk · Aǫ0
pk · Apk =

pk · A(ǫ0 +∑j<k αjp
j)

pk · Apk = −αk .

So, the conjugate directions method cuts away the components of
ǫ0 one by one, and converges in N steps.
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The conjugate gradient construction

The CG corresponds to constructing the pi from the set of r i

already generated. If so, and previous steps gave residuals r0, r1,
· · · , r i−1, then r i is orthogonal to the subspace spanned by them,
since pi · r j = pi · Aǫj = 0 if i < j . As a result, the r i are
orthogonal to each other, so r j is always a new search direction.
Since r i are linear combinations of previous residuals and Api , the
subspace spanned by them is also spanned by r0, Ar0, A2r0, etc..
This is called a Krylov space.
The conjugate directions can be constructed by a Gram-Schmidt
process (with “metric” A) in general, but because of the
orthogonalities here, one step suffices. As a result

pi+1 = r i+1 + βi+1p
i , where βi+1 =

r i+1 · r i+1

r i · r i .

The immense simplification is that the previous vectors do not
have to stored for Gram-Schmidt conjugation
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The conjugate gradient algorithm

Putting everything together, the algorithm is initialized with
p0 = r0 = b − Ax0. Then the iteration is

α =
r i · r i
pi · Api

x i+1 = x i + αpi

r i+1 = r i − αpi

β =
r i+1 · r i+1

r i · r i
pi+1 = r i+1 + βpi .

There is only one MvM per step, and two dot products (the r i · r i
can be saved from the previous iteration). MvM is easy to
parallelize, but the dot products break parallel execution.

SG Introduction to LGT



Outline RG LGT Fermions Formulations Propagators Cite

History of the conjugate gradient algorithm

“The method of conjugate gradients was developed independently
by E. Stiefel of the Institute of Applied Mathematics at Zürich and
by M. R. Hestenes with the cooperation of J. B. Rosser, G.
Forsythe, and L. Paige of the Institute for Numerical Analysis,
National Bureau of Standards. The present account was prepared
jointly by M. R. Hestenes and E. Stiefel during the latter’s stay at
the National Bureau of Standards. The first papers on this method
were given by E. Stiefel [1952] and by M. R. Hestenes [1951].
Reports on this method were given by E. Stiefel and J. B. Rosser at
a Symposium on August 23-25, 1951. Recently, C. Lanczos [1952]
developed a closely related routine based on his earlier paper on
eigenvalue problem [1950]. Examples and numerical tests of the
method have been by R. Hayes, U. Hoschstrasser, and M. Stein.”
from Hestenes and Stiefel, 1952
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The importance of technology

The CG was not devised earlier because

◮ CG does not work on slide rules

◮ CG has no advantage over Gauss elimination when using
calculators

◮ CG has too much data exchange for a room full of human
computers

◮ CG needs an appropriate computational engine

“The CG was discovered because Hestenes, Lanczos and Stiefel all
had shiny, brand new toys (SWAC for Hestenes and Lanczos, Z4
for Stiefel).”
Dianne P. O’Leary, SIAM Linear Algebra Meeting, 2009.

SG Introduction to LGT



Outline RG LGT Fermions Formulations Propagators Cite

References

K. G. Wilson, Confinement of Quarks, Phys. Rev., D10, 2445,
1974.

M. Creutz, Quarks, Gluons and Lattices, Cambridge University
Press.

J. Smit, Introduction to Quantum Fields on a Lattice,
Cambridge University Press.

I. Montvay and G. Münster, Quantum Fields on a Lattice,
Cambridge University Press.

J. R. Shewchuk, An Introduction to the Conjugate Gradient

Method without the Agonizing Pain, Penn State University
Website (1994).

SG Introduction to LGT


	Outline
	The path integral and the renormalization group
	The path integral formulation
	Field theory, divergences, renormalization
	Example 1: the central limit theorem
	Example 2: the Ising model
	Example 3: scalar field theory
	Bosons on the lattice
	References

	Lattice formulation of gauge theories
	Wilson's formulation of lattice gauge theory
	Confinement in strong coupling
	Gauge theories at high temperature
	Monte Carlo Simulations
	The continuum limit

	Lattice Fermions
	Putting fermions on the lattice
	Fermion matrix inversions
	References


