## How close is QCD to its conformal cousins?

Saumen Datta and Sourendu Gupta

**TIFR** 

ICTS discussion meeting on Applied String Theory TIFR, Mumbai March 22, 2011 Phase diagrams

RG scaling and the continuum limit

The equation of state

Summary

### Outline

Phase diagrams

RG scaling and the continuum limit

The equation of state

Summary

# Why study gluo $N_c$ plasmas?

1. Because they may model the kind of problems which we would like to solve for QCD. The  $N_c \to \infty$ ,  $g^2 \to 0$  ( $\lambda = g^2 N_c$  fixed) limit is the toyland in parts of which the AdS/CFT correspondence can be applied. The approach to  $N_c = 3$  from other parts of this toyland may be tested by computations with small  $N_c$ .

# Why study gluo $N_c$ plasmas?

- 1. Because they may model the kind of problems which we would like to solve for QCD. The  $N_c \to \infty$ ,  $g^2 \to 0$  ( $\lambda = g^2 N_c$  fixed) limit is the toyland in parts of which the AdS/CFT correspondence can be applied. The approach to  $N_c = 3$  from other parts of this toyland may be tested by computations with small  $N_c$ .
- 2. Because small  $N_c$  computations are possible. Simulations of pure gauge theories are dominated by matrix multiplication, hence scale as  $N_c^3$ . Complexity of quarks goes as  $N_c^2$  and becomes irrelevant when  $N_c \gg 40$ . For adjoint fermions, complexity scales as  $N_c^3$ , and the problem is always hard to do.

# Why study gluo $N_c$ plasmas?

- 1. Because they may model the kind of problems which we would like to solve for QCD. The  $N_c \to \infty$ ,  $g^2 \to 0$  ( $\lambda = g^2 N_c$  fixed) limit is the toyland in parts of which the AdS/CFT correspondence can be applied. The approach to  $N_c = 3$  from other parts of this toyland may be tested by computations with small  $N_c$ .
- 2. Because small  $N_c$  computations are possible. Simulations of pure gauge theories are dominated by matrix multiplication, hence scale as  $N_c^3$ . Complexity of quarks goes as  $N_c^2$  and becomes irrelevant when  $N_c \gg 40$ . For adjoint fermions, complexity scales as  $N_c^3$ , and the problem is always hard to do.
- 3. Because we can take the continuum limit for  $3 \le N_c \le 10$  pure gauge theory and obtain precision results in thermodynamics. Also answer other interesting questions about the large  $N_c$  limit.

# Flag diagram of QCD



Flag diagram is a projection of the phase diagram. Columbia 1990

# Flag diagram of QCD



Flag diagram is a projection of the phase diagram. Columbia 1990

## Flag diagram of QCD



Flag diagram is a projection of the phase diagram. Columbia 1990









#### Outline

Phase diagrams

RG scaling and the continuum limit

The equation of state

Summary

#### Cutoff and continuum theories

#### The cutoff theory on the lattice

The lattice spacing is a. Tune the lattice spacing by tuning the bare coupling,  $g_B^2$ . At finite temperature:  $N_t a = 1/T$ , i.e., extent of Euclidean time direction is equal to 1/T. High temperature expansions can be performed at strong coupling.

## Strategy for taking the continuum limit

Fix  $N_t$ , vary  $g_B^2$  to find where the deconfinement transition takes place. This gives  $a_c(N_t)$ . Then make a T=0 measurement with  $a_c$  to find  $\alpha_s(a_c)$ . If  $a_c$  is small enough then 2-loop RG can be used to give

$$a_c \Lambda_{\overline{MS}} = \frac{N_t \Lambda_{\overline{MS}}}{T_c} = RG(\alpha_s).$$

SG, 1999

## Unphysical strong-weak coupling crossover



Wilson action. Earlier generation of simulations limited by this bulk transition. Solution now: move to smaller lattice spacing; work only in the sector which can be continued to the continuum.

### Precision test of RG



 $\beta_c$  determined to one part in  $10^4$ ;  $\alpha_s$  determined at same lattice spacing. 2-loop RG works with precision of about one part in  $10^3$  for  $a \le 1/(8T_c)$ . For larger a: non-perturbative RG.

#### Precision test of RG



 $\beta_c$  determined to one part in  $10^4$ ;  $\alpha_s$  determined at same lattice spacing. 2-loop RG works with precision of about one part in  $10^3$  for  $a \le 1/(8T_c)$ . For larger a: non-perturbative RG.

#### Precision test of RG



 $\beta_c$  determined to one part in  $10^4$ ;  $\alpha_s$  determined at same lattice spacing. 2-loop RG works with precision of about one part in  $10^3$  for  $a \le 1/(8T_c)$ . For larger a: non-perturbative RG.

$$T_c(N_c)$$

RG scaling yields measurement of  $T_c/\Lambda_{\overline{MS}}$  at each  $N_c$ : *i.e.*, the phase boundary of pure gauge theory.

Convert to

$$\lambda_c(N_c) = N_c \alpha_s(2\pi T_c).$$

This is a description of the phase boundary in terms of  $T/\Lambda_{\overline{MS}}$ . Natural in terms of the 't Hooft scaling procedure.

$$T_c(N_c)$$

RG scaling yields measurement of  $T_c/\Lambda_{\overline{MS}}$  at each  $N_c$ : *i.e.*, the phase boundary of pure gauge theory.

Convert to

$$\lambda_c(N_c) = N_c \alpha_s(2\pi T_c).$$

This is a description of the phase boundary in terms of  $T/\Lambda_{\overline{MS}}$ . Natural in terms of the 't Hooft scaling procedure.

Alternate description of the phase boundary available: measure  $T_c/\sqrt{\sigma}$  or  $T_c/M$  ( $\sigma$ : string tension, M: glueball mass). In terms of these, very small corrections in powers of  $1/N_c^2$ : call this the strong scaling procedure.

## Results for the phase boundary



Phase boundary clearly nonlinear (even excluding  $N_c = 8$  and 10).

## Results for the phase boundary



Phase boundary clearly nonlinear (even excluding  $N_c = 8$  and 10).

# Shape of the phase boundary

#### Best fit series

$$\lambda_c = \begin{cases} 9.8771(4) - \frac{14.2562(2)}{N_c^2} + \frac{54.7830(2)}{N_c^4} & \text{(non-perturbative),} \\ 9.9904(6) + \frac{1.2081(3)}{N_c^2} - \frac{23.5709(3)}{N_c^4} & \text{(2-loop).} \end{cases}$$

## Shape of the phase boundary

#### Best fit series

$$\lambda_c = \begin{cases} 9.8771(4) - \frac{14.2562(2)}{N_c^2} + \frac{54.7830(2)}{N_c^4} & \text{(non-perturbative),} \\ 9.9904(6) + \frac{1.2081(3)}{N_c^2} - \frac{23.5709(3)}{N_c^4} & \text{(2-loop).} \end{cases}$$

#### Improving the series

Need more terms in the series; impossible with same data. Try a simple Padé resummation:

$$\lambda_c(N_c) = \lambda_c(\infty) + \frac{\gamma/N_c^2}{1 + N_*^2/N_c^2}$$

Best fit has  $N_* \simeq 4$ .

## Outline

Phase diagrams

RG scaling and the continuum limit

The equation of state

Summary

## The equation of state of gluo $N_c$ plasma

Energy density and pressure both functions of T:

$$\frac{E}{T^4} = \frac{1}{VT^2} \left. \frac{\partial \log Z}{\partial T} \right|_V \qquad \frac{P}{T^4} = \frac{1}{T^3} \left. \frac{\partial \log Z}{\partial V} \right|_T.$$

Derived quantities are

$$\frac{\Delta}{T^4} = \frac{E - 3P}{T^4} \qquad \frac{S}{T^3} = \frac{E + P}{T^4}.$$

These dimensionless quantities are functions of  $T/\Lambda_{\overline{MS}}$ . One can also obtain the speed of sound. A second derivative of the free energy give the specific heat  $c_V$ .

 $N_c$  dependence: scaling as  $N_c^0$  below  $T_c$ , as  $d_A = N_c^2 - 1$  above  $T_c$ .

# Conformal symmetry breaking



Good scaling of  $\Delta/T^4=(E-3P)/T^4$  with  $N_c$  at fixed  $T/T_c$  (strong  $N_c$  scaling).  $\Delta^{1/4}\simeq T$  even at  $T\simeq 2T_c$  for  $N_c=3$ : no conformal symmetry

## Detailed view near $T_c$



Peak shifts towards  $T_c$  with increasing  $N_c$ . Evidence for stronger finite size effects for  $N_c = 3$ ? Measure correlation lengths in future.

#### Evidence for mass?



 $\Delta/T^2 \simeq$  constant is generic evidence for mass scales persisting in the high temperature phase.

## Cutoff dependence of pressure



## The equation of state



Far from ideal gas. Good scaling of EOS with  $N_c$  at fixed  $T/T_c$  (strong  $N_c$  scaling).

# The equation of state



Far from ideal gas. Good scaling of EOS with  $N_c$  at fixed  $T/T_c$  (strong  $N_c$  scaling).

# Conformal theory?



## Conformal theory?



## Conformal theory?



### Outline

Phase diagrams

RG scaling and the continuum limit

The equation of state

Summary

### Main results

- Location of deconfining first order transition measured with high accuracy. Yields high precision test of RG scaling. Continuum limit can be taken from  $a \le 1/(8T_c)$  using 2-loop RG.
- Phase boundary,  $T_c(N_c)$ , determined accurately at finite  $N_c$ . Extrapolation to  $N_c \to \infty$  hard in terms of  $T_c/\Lambda_{\overline{MS}}$  ('t Hooft scaling) because series expansion in  $1/N_c^2$  may have radius of convergence which excludes  $N_c \le 4$ . In terms of  $T_c/\sqrt{\sigma}$  may be simpler (strong scaling).
- ▶ EOS determined with good accuracy. Strong scaling works, i.e.,  $E/T^4$ ,  $P/T^4$ , etc., scale well from  $N_c \simeq 3$  to  $N_c = \infty$  at fixed  $T/T_c$ . Possible violation of strong scaling near  $T_c$ .
- ▶ EOS measured on lattice closer to weak-coupling theory than to conformal theory up to  $T \simeq 2\text{--}3\,T_c$ . At  $T = 2\,T_c$ ,  $\Delta^{1/4} \simeq T$ .