Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

The phase diagram of strongly interacting matter

Sourendu Gupta

(ILGTI) TIFR

IOP Bhubaneshwar August 8, 2011

(ILGTI) TIFR

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Introduction

Introduction

Bulk Strongly Interacting Matter

Relativistic Heavy-ion Collisions

Fluctuations of Conserved Quantities

Conclusions

The Discovery of the Strong Interactions

1911: the discovery of the atomic nucleus

The scattering of α and β particles by matter and the structure of the atom, E. Rutherford, Phil. Mag. 21 (**1911**) 668–88.

1961: quarks underly the visible world

Axial Vector Current Conservation in Weak Interactions, Y. Nambu, Phys. Rev. Lett. 4 (**1960**) 380–2. The Eighfold Way: A Theory of strong interaction symmetry Murray Gell-Mann CTSL-20, TID-12608, Mar. **1961**, 49 pp. Derivation of strong interactions from a gauge invariance, Yuval Ne'eman, Nucl. Phys. 26 (**1961**) 222–9.

The Discovery of the Theory of Strong Interactions

Asymptotic freedom in QCD

Ultraviolet Behavior of Nonabelian Gauge Theories, D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (**1973**) 1343–6. Reliable Perturbative Results for Strong Interactions? H. D. Politzer, Phys. Rev. Lett. 30 (**1973**) 1346–9.

Confinement in QCD

Confinement of Quarks, K. G. Wilson Phys. Rev. D 10 (**1974**) 2445–59.

Quantum Chromo Dynamics: a hard problem

Asymptotic freedom implies weak coupling expansion works at large energy. Strong coupling at low energy hard to tackle. Many models: quark models, Nambu Jona-Lasinio model, QCD (AVZ) sum rules, Skyrme model, PNJL model, AdS/CFT models.

Inadequacy of models

"One may say that the reason why QCD is hard to solve is not just that it is strongly coupled in the IR, but that it is strongly coupled in the IR and weakly coupled in the UV."

David Mateos, plenary talk at Quark Matter 2011: Gauge-String duality applied to heavy ion collisions: Limitations, insights and prospects

No model of QCD simpler than a nonabelian gauge theory is known.

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

QCD works very well

QED coupling: $\alpha = \frac{e^2}{\hbar c}$. QCD coupling: analogous, runs with distance. Potential between static charges not Coulombic.

(ILGTI) TIFR

K. Nakamura et al. (Particle Data Group)

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

QCD works very well

QED coupling: $\alpha = \frac{e^2}{\hbar c}$. QCD coupling: analogous, runs with distance. Potential between static charges not Coulombic.

Logarithmic corrections to potential. Log implies QCD has an intrinsic length scale.

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

QCD works very well

QED coupling: $\alpha = \frac{e^2}{\hbar c}$. QCD coupling: analogous, runs with distance. Potential between static charges not Coulombic. Logarithmic corrections to potential. Log implies QCD has an intrinsic length scale. Trade this scale for any observable with dimension of

length / time / energy.

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Weak and strong coupling agree

K. Nakamura et al. (Particle Data Group), J. Phys. G 37, (2010) 075021

Weak coupling regime (non-lattice): $\alpha_s(M_z) = 0.1186 \pm 0.0011$. Strong coupling regime (lattice): $\alpha_s(M_z) = 0.1189^{+0.0004}_{-0.0006}$.

Shintani, Lattice 2011, July 2011

Sourendu Gupta

Bulk Strongly Interacting Matter

Introduction

Bulk Strongly Interacting Matter

Relativistic Heavy-ion Collisions

Fluctuations of Conserved Quantities

Conclusions

Thermodynamics is the frame work

Bulk matter is described by thermodynamics: (almost) irrespective of the microscopic forces between constituents. Strongly interacting matter seems to be no different.

Conserved quantities

Energy and net electrical charge (Q), net baryon number (B), and net strangeness (S) are conserved. Grand canonical ensemble (GCE): introduce Lagrange multipliers called temperature T and chemical potentials $(\mu_Q, \mu_B \text{ and } \mu_S)$.

Thermodynamics is the frame work

Bulk matter is described by thermodynamics: (almost) irrespective of the microscopic forces between constituents. Strongly interacting matter seems to be no different.

Conserved quantities

Energy and net electrical charge (Q), net baryon number (B), and net strangeness (S) are conserved. Grand canonical ensemble (GCE): introduce Lagrange multipliers called temperature T and chemical potentials $(\mu_Q, \mu_B \text{ and } \mu_S)$.

Phase transitions are possible: pion may no longer be a Nambu boson. Phase diagram requires simultaneous control of weak and strong interaction regimes.

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

The phases of QCD

- ► The vacuum phase: chiral symmetry spontaneously broken, colour confined. Excitations are the normal hadrons.
- The quark-gluon plasma phase: approximate chiral symmetry restored, colour deconfined. Excitations are quasi-quarks. Cabibbo and Parisi, Phys. Lett. B 59 (1975) 67
- Quarkyonic phases: conjectured approximate chiral symmetry restored but confined phases. Excitations could be abnormal hadrons. McLerran and Pisarski, Nucl. Phys. A 796 (2007) 83
- Colour superconducting phases: quasi-quarks bound into coloured Cooper pairs, colour gauge symmetry broken.
 Possibility of many different kinds of superconducting phases.
 Excitations are coloured hadron-like and coloured Higgs bosons. Alford, Rajagopal and Wilczek, Phys. Lett. B 422 (1998) 247

μ

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

μ

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

μ

 $T_c^{deconf} \simeq 175$ MeV, $T_c^{\chi} \simeq 150$ MeV, Y. Aoki et al., Phys. Lett. B 643 (2006) 46

Sourendu Gupta

(ILGTI) TIFR

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

μ

(ILGTI) TIFR

 $T_c^{deconf} \simeq 175$ MeV, $T_c^{\chi} \simeq 150$ MeV, Y. Aoki et al., Phys. Lett. B 643 (2006) 46

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

μ

 $T_c^{deconf} \simeq 175$ MeV, $T_c^{\chi} \simeq 150$ MeV, Y. Aoki et al., Phys. Lett. B 643 (2006) 46

Sourendu Gupta

(ILGTI) TIFR

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

μ

(ILGTI) TIFR

 $T_c^{deconf} \simeq 175$ MeV, $T_c^{\chi} \simeq 150$ MeV, Y. Aoki et al., Phys. Lett. B 643 (2006) 46

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

μ

(ILGTI) TIFR

 $T_c^{deconf} \simeq 175$ MeV, $T_c^{\chi} \simeq 150$ MeV, Y. Aoki et al., Phys. Lett. B 643 (2006) 46

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

μ

(ILGTI) TIFR

Gavai and Gupta, Phys. Rev. D 71 (2005) 110414, D 78 (2008) 114503

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

μ

(ILGTI) TIFR

Gavai and Gupta, Phys. Rev. D 71 (2005) 110414, D 78 (2008) 114503

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

μ

(ILGTI) TIFR

Gavai and Gupta, Phys. Rev. D 71 (2005) 110414, D 78 (2008) 114503

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Relativistic Heavy-ion Collisions

Introduction

Bulk Strongly Interacting Matter

Relativistic Heavy-ion Collisions

Fluctuations of Conserved Quantities

Conclusions

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Anishetty, Koehler, McLerran, Phys. Rev. D22 (1980) 2793

Sourendu Gupta

(ILGTI) TIFR

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Anishetty, Koehler, McLerran, Phys. Rev. D22 (1980) 2793

Sourendu Gupta

(ILGTI) TIFR

Anishetty, Koehler, McLerran, Phys. Rev. D22 (1980) 2793

Sourendu Gupta

(ILGTI) TIFR

Introduction Bulk matter Heavy-ion collisions Fluctuations Conclusions

Beating a path through the phase diagram of QCD

Anishetty, Koehler, McLerran, Phys. Rev. D22 (1980) 2793

Sourendu Gupta

(ILGTI) TIFR

Anishetty, Koehler, McLerran, Phys. Rev. D22 (1980) 2793

Sourendu Gupta

(ILGTI) TIFR

Introduction Bulk matter Heavy-ion collisions Fluctuations Conclusions

Beating a path through the phase diagram of QCD

Anishetty, Koehler, McLerran, Phys. Rev. D22 (1980) 2793

Sourendu Gupta

(ILGTI) TIFR

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Inferring freeze out conditions

Andronic et al, nucl-th/051107

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

μ

Braun-Munzinger, Cleymans, Redlich, Stachel, Xu

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Braun-Munzinger, Cleymans, Redlich, Stachel, Xu

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Braun-Munzinger, Cleymans, Redlich, Stachel, Xu

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Braun-Munzinger, Cleymans, Redlich, Stachel, Xu

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions
<u>.</u>				

Observables

- **1. Yields and spectra**: hadrons may give more information on freeze out conditions Cleymans, Satz, Mukherjee, Godbole, SG, *etc.*
- 2. Flow: angular correlations (v_2 , *etc.*) and fluctuations may give information on initial state and transport Ollitrault, Bhalerao, Srivastav *etc.*
- 3. Penetrating probes: dileptons and photons may give information on the evolution of the fireball Srivastava, Alam, Gale etc.
- 4. Hadron correlations: jet quenching, ridge phenomenology may give information on transport PHENIX, STAR, ALICE, CMS
- **5.** Fluctuations of conserved quantities: fluctuations of *B*, *Q*, *S*, may give information on the phase diagram Gavai, Mohanty,

SG, Stephanov, Asakawa etc.

Fluctuations of Conserved Quantities

Introduction

Bulk Strongly Interacting Matter

Relativistic Heavy-ion Collisions

Fluctuations of Conserved Quantities

Conclusions

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Event-by-Event fluctuations of baryons

Central rapidity slice. Experiments blind to neutrons; but isospin fluctuations small. Assumption tested in event generators.

(ILGTI) TIFR

STAR 2010, Asakawa and Kitazawa 2011

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Shapes of distributions

- **1.** Experiments simulate a GCE when cuts are chosen appropriately.
- **2.** Cumulants of the distribution, $[B^n]$, measure the shape; then connected to measurables in GCE:

$$[B^n] = (VT^3) T^{n-4} \chi_B^{(n)}(t,z).$$

- **3.** Shape variables $\langle B \rangle$, $\sigma^2 = [B^2]$, skewness $S = [B^3]/\sigma^3$ and Kurtosis $\kappa = [B^4]/\sigma^4$ scale as expected with change in V (proxy measure: $V \propto N_{part}$). Central limit theorem.
- 4. Study of finite-volume effects gives more information about the theory than thermodynamic analysis. In the $V \to \infty$ limit the distribution is Gaussian; S, κ etc. vanish.

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

At a normal point fluctuations are Gaussian

Mohanty, QM 2009

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

QCD predictions at finite μ_B

Make a MacLaurin expansion of the (dimensionless) pressure:

$$\frac{1}{T^4} P(t,z) = \sum_{n=0}^{\infty} T^{n-4} \chi_B^{(n)}(t,0) \frac{z^n}{n!}, \quad \text{where} \quad t = \frac{T}{T_c}, z = \frac{\mu_B}{T}.$$

and measure each NLS at z = 0. Gavai and SG 2003 By resumming the series, construct the lattice predictions for:

$$T^{n-4}\chi_B^{(n)}(t,z) = rac{1}{T^4}rac{\partial^n P(t,z)}{\partial z^n}, \qquad ext{where} \quad t = rac{T}{T_c}, z = rac{\mu_B}{T}.$$

Series resummation needed since the series can diverge near a critical point: ie, any term of the series is as important as any other, and neglect of an infinite number of terms is not justified. Gavai and SG 2008

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Ratios of cumulants

Cumulants depend on volume: prone to large fluctuations. However, ratios of cumulants are state variables independent of the volume: well-determined functions on the phase diagram.

SG, PoS CPOD2009 (2009) 025

Sourendu Gupta

Introduction Bulk matter Heavy-ion collisions Fluctuations Conclusions

Shape of fluctuations at freezeout

Lattice predictions along the freezeout curve of heavy-ion collisions. Gavai and SG, Phys. Lett. B696 (2010) 459 (ILGTI) TIFR

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Tuning lattice scale to match data

SG, Luo, Mohanty, Ritter, Xu, Science, 332 (2011) 1525

Sourendu Gupta

Checking the match

Sourendu Gupta

(ILGTI) TIFR

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions
Results				

T_c

First direct test of lattice against data for bulk matter requires

$$T_c = 175^{+1}_{-7} \text{ MeV}.$$

In agreement with other scale settings on the lattice. Indicates that non-perturbative phenomena in single hadron physics and strong interaction thermodynamics are mutually consistent through QCD.

Thermalization in bulk matter

1 parameter tuning makes thermodynamic predictions agree with data for 2 ratios at 3 energies. Indicates thermalization of the fireball at chemical freezeout. Simultaneously, test of central limit theorem shows that correlation lengths are small.

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Conclusions

Introduction

Bulk Strongly Interacting Matter

Relativistic Heavy-ion Collisions

Fluctuations of Conserved Quantities

Conclusions

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

The future

Finding the critical point

At the critical point correlations and relaxation times diverge: system falls out of equilibrium. Agreement of shape variables with QCD predictions implies normal points. Lack of agreement, coupled with test of failure of CLT implies critical point. This would be the second step in exploring the phase diagram of QCD.

Technical issues remain

Do fluctuations freeze out at the same time as yields? How significant are isospin fluctuations beyond chemical freezeout? How much does the freezeout point for fluctuations change as the acceptance is changed?

There are small remaining cutoff and quark mass effects in the lattice predictions: how do they affect physics?

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Sourendu Gupta

(ILGTI) TIFR

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

(a,b) Lattice, (c) hadron gas, (d) this work

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

(a,b) Lattice, (c) hadron gas, (d) this work

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

Sourendu Gupta

Introduction	Bulk matter	Heavy-ion collisions	Fluctuations	Conclusions

