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Introduction

Heavy-ion physics

Experimental observations

Many interesting new phenomena: jet quenching, elliptic flow,
strange chemistry, fluctuations of conserved quantities ...
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Introduction

Heavy-ion physics

Experimental observations

Many interesting new phenomena: jet quenching, elliptic flow,
strange chemistry, fluctuations of conserved quantities ...

Systematic understanding

Matter formed: characterized by T and p. History of fireball
described by hydrodynamics and diffusion. Small mean free paths.
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Introduction

Heavy-ion physics

Experimental observations

Many interesting new phenomena: jet quenching, elliptic flow,
strange chemistry, fluctuations of conserved quantities ...

Systematic understanding

Matter formed: characterized by T and p. History of fireball
described by hydrodynamics and diffusion. Small mean free paths.

v

Theoretical underpinning

Does QCD describe this matter? Is there a new nonperturbative
test of QCD?
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© Fluctuations of conserved quantities
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Fluctuations

Fluctuations of conserved quantities

Observations

In a single heavy-ion collision, each conserved quantity (B, Q, S) is
exactly constant when the full fireball is observed. In a small part
of the fireball they fluctuate: from part to part and event to event.

SG Phase diagram of QCD



Fluctuations

Fluctuations of conserved quantities

In a single heavy-ion collision, each conserved quantity (B, Q, S) is
exactly constant when the full fireball is observed. In a small part
of the fireball they fluctuate: from part to part and event to event.

Thermodynamics

If 53 <K Viops < Viireball, then fluctuations can be explained in the
grand canonical ensemble: energy and B, Q, S allowed to fluctuate
in one part by exchange with rest of fireball (diffusion: transport).
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Fluctuations

Fluctuations of conserved quantities

Observations

In a single heavy-ion collision, each conserved quantity (B, Q, S) is
exactly constant when the full fireball is observed. In a small part
of the fireball they fluctuate: from part to part and event to event.

Thermodynamics

If 53 <K Viops < Viireball, then fluctuations can be explained in the
grand canonical ensemble: energy and B, Q, S allowed to fluctuate
in one part by exchange with rest of fireball (diffusion: transport).

Comparison

Is the observed volume small compared to the volume of the
fireball? Are observations in agreement with QCD
thermodynamics?

A
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Fluctuations

Event-to-event fluctuations
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Fluctuations

Finite size scaling

Net-protons Au+Au 200 GeV
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Fluctuations

QCD predictions at finite up

Madhava-Maclaurin expansion of the (dimensionless) pressure:

1 = _ z"

Twwnziymu?mm, (t=T/Te, z2=p/T)
n=:

measure each NLS at p = 0, sum series expansion to find NLS at

any p. Shape variables: [B"] = (Vops T3)T”_4X(;)(t,z). Ratios of

cumulants are state variables:
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Fluctuations

Lattice predictions along the freezeout curve

guark gluon plasma

colour superconducting
hadronic quarkyonic

u

Hadron gas models: Hagedorn, Braun-Munzinger, Stachel, Cleymans, Redlich,
Becattini
Lattice predictions continued from p = 0 to the freezeout curve
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Lattice predictions along the freezeout curve
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colour superconducting
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nuclear matter M

Hadron gas models: Hagedorn, Braun-Munzinger, Stachel, Cleymans, Redlich,
Becattini
Lattice predictions continued from p = 0 to the freezeout curve
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Fluctuations

Lattice predictions along the freezeout curve

T guark gluon plasma
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hadronic \ quarkyonic
nuclear matter M

Hadron gas models: Hagedorn, Braun-Munzinger, Stachel, Cleymans, Redlich,
Becattini
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Fluctuations

Checking the match
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© New approaches to standing questions
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Three strategies

Two earlier suggestions

far from the freezeout curve over a certain range of energy, then my decreases with mereasing
N g these two measurements and comparing with lattice predictions,
it is possible to estimate the freezeont conditions: T/7T,. and pg| This method & independent of the usual one
in which hadron yields are interpreted through a resonance gas picture |15, Comparison of the two methods then
ment of the previous paragraph. Mutual agreement of the values of T,

If the eritical point i
(since z decreases) and myg ine

wes, U

allows us to estimate T, by inverting the a

If this proof holds

so derived at different /5,5 would constitute the first firm experimental proof of thermalization.
then one also obtains the simplest and most direet measurement of 7). found till now. Sinee such a thermometric
measurement can be made reliably with data at large /8L, where pg is small it would remain a valid measarement
whether or not a critical point is found in the low energy scan at RHIC.

Gavai, SG (Jan 2010)

SG




Three strategies

Two earlier suggestions

easing
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Two earlier suggestions
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The first strategy
Use the chemical freezeout curve and the agreement of data and
prediction along it to measure

T. = 1751 MeV.

GLMRX, 2011
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Three strategies

The first strategy: measuring T,
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Three strategies

The second strategy

Using the Madhava-Maclaurin expansion,

B @y 1+0(2)
™= B w2/ T 13 ()]
2

8] Oz  110(2)
B3] xO)(t,2)/T [1 ~10 ZA)}

Match lattice predictions and data (including statistical and
systematic errors) assuming knowledge of z,.
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Three strategies

The second strategy: pumetry
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Three strategies

A third strategy

Fit mp and m3 simultaneously to get both z and z,. Since z, is the
position of the critical point: high energy data already gives
information on the critical point!

Indirect experimental estimate of the critical point

From the highest RHIC energy using both statistical and

systematic errors:
uE

Compatible with current lattice estimates: but no lattice input.
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Three strategies

A third strategy

Fit mp and m3 simultaneously to get both z and z,. Since z, is the
position of the critical point: high energy data already gives
information on the critical point!

Indirect experimental estimate of the critical point

From the highest RHIC energy using both statistical and

systematic errors:
uE

Compatible with current lattice estimates: but no lattice input.

y

Reduction of systematic errors on mg and ms can give estimates of
both upper and lower limits on the estimate of the critical point.
Cross check the BES result by high energy RHIC/LHC data.
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Three strategies

Three signs of the critical point

At the critical point £ — oo.

Scaling [B"] ~ V fails: fluctuations remains out of thermal
equilibrium. Signals of out-of-equilibrium physics in other signals.

2: Non-monotonic variation

At least some of the cumulant ratios mg, my, my and m3 will not
vary monotonically with v/S. If no critical point then mp3 o< 1/z
and my x z.

3: Lack of agreement with QCD thermodynamics

Away from the critical point agreement with QCD observed. In the
critical region no agreement.
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@ Systematic errors and intrinsic scales
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Systematics

Length scales in thermodynamics

Persistence of memory?

B, Q, S is exactly constant in full fireball volume Vg epay. In a part
of the fireball they fluctuate. When V,ps < Viirepan then global
conservation unimportant. Change acceptance to change Vi ps.
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Systematics

Length scales in thermodynamics

Persistence of memory?

B, Q, S is exactly constant in full fireball volume Vg epay. In a part
of the fireball they fluctuate. When V,ps < Viirepan then global
conservation unimportant. Change acceptance to change Vi ps.

The central limit theorem

When €3 < Vps, then thermalization possible: by diffusion of
energy, B, Q, and S to/from Vs to rest of fireball. Many
“fluctuation volumes” implies that thermodynamic fluctuations are
Gaussian (central limit theorem).
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Systematics

Length scales in thermodynamics

Persistence of memory?

B, Q, S is exactly constant in full fireball volume Vg epay. In a part
of the fireball they fluctuate. When V,ps < Viirepan then global
conservation unimportant. Change acceptance to change Vi ps.

The central limit theorem

When €3 < Vps, then thermalization possible: by diffusion of
energy, B, Q, and S to/from Vs to rest of fireball. Many
“fluctuation volumes” implies that thermodynamic fluctuations are
Gaussian (central limit theorem).

Finite size scaling

Since V,ps is finite, departure from Gaussian. Finite size scaling
possible: if equilibrium then relate QCD predictions to finite
volume effects.
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Systematics

Correlation lengths
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Correlation length in thermodynamics defined through static
correlator: same as screening lengths. Implies €3 < V,ps: check.

Padmanath et al., 2011
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Systematics

Coupling diffusion to flow

Entropy content in B or S small compared to entropy content of
full fireball. Coupled relativistic hydro and diffusion equations can
then be simplified to diffusion-advection equation.
Which is more important— diffusion or advection? Examine
Peclet's number

pe= = A _ y?

D §¢s 3

When Pe <« 1 diffusion dominates. When Pe > 1 advection
dominates. Crossover between these regimes when Pe ~ 1.

Bhalerao and SG, 2009, and in progress
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Systematics

Coupling diffusion to flow

Entropy content in B or S small compared to entropy content of
full fireball. Coupled relativistic hydro and diffusion equations can
then be simplified to diffusion-advection equation.
Which is more important— diffusion or advection? Examine
Peclet's number

pe= 2 =My

D §¢s 3

When Pe <« 1 diffusion dominates. When Pe > 1 advection
dominates. Crossover between these regimes when Pe ~ 1.

Advective length scale

New length scale: determines when flow overtakes diffusive
evolution—

§
A~ >,
M

Bhalerao and SG, 2009, and in progress
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Systematics

Finite volumes: density sets a scale

When the total number of baryons (baryons + antibaryons)
detected is B, , the volume per detected baryon is (3 = V,ps/By.
If { >~ € then system may not be thermodynamic: controlled when
Vobs/£3 — 0.

Events which (by chance) have large B, take longer to come to
chemical equilibrium: important to study these transport
properties. Can one selectively study these rare events?
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Systematics

Finite volumes: density sets a scale

When the total number of baryons (baryons + antibaryons)
detected is B, , the volume per detected baryon is (3 = V,ps/By.
If { >~ € then system may not be thermodynamic: controlled when
Vobs/£3 — 0.

Events which (by chance) have large B, take longer to come to
chemical equilibrium: important to study these transport
properties. Can one selectively study these rare events?

On cumulant order

In central Au Au collisions, the measurement of [B®] involves
(/€ ~ 2. Could it be used to study transport? Probe this by
separating out samples with large By and studying their statistics.
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Systematics

Protons or baryons?

O If 1/73 is the reaction rate for the slowest process which takes
p <> n, then the system reaches (isospin) chemical equilibrium
at time t > 3.

Q Once system is at chemical equilibrium, the proton/baryon
ratio can be expressed in terms of the isospin chemical
potential: p3. Since baryons are small component of the net
isospin, p3 can be obtained in terms of the charge chemical
potential pq.

© If not, then is it still possible to extract the shape of the E/E
baryon distribution?

Asakawa, Kitazawa: 2011
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© Summary
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Summary

Old questions with new answers

© What is the QCD cross over temperature: T.? If freezeout
curve, {T(V/'S), 1(v/S)}, is assumed to be known, then T,
can be found very accurately from the shape of E/E
fluctuations of conserved charges.

@ What is the freezeout curve for fluctuations? If T, is known
well enough, then the argument can be turned around and the
freezeout curve can be determined from the shape of E/E
fluctuations of conserved charges.

© If the critical point is assumed to lie near the freezeout curve,
then its position can be inferred from high energy
measurement without the benefit of lattice predictions, and
verified by direct search.

© Good news for lattice QCD: experimental value of T,
compatible with known results; critical end point also
compatible with current experimental results.
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Summary

Six scales to think of

Scale of the persistence of memory, Viirepar. When

Viireball/ Vobs > 1 then overall conservation forgotten.
Shortest length scale &, controls scale at which diffusion of B
becomes important.

Scale of observation volume, V,ps. Set by the detector.
Comparison to lattice works when &3 < Viops < Viireball.

Peclet scale, A = &£/M (where M is the Mach number).
Controls freeze out of fluctuations.

© 6 o0 o ©

Volume per unit baryon number, (3 = V,s/B,. Events with
¢ ~ £, may give insight into diffusion time scale.

@ Time scale for reaction p <+ n, 73 needs to be understood.
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Summary

Backup: Is there physics at T.7

Is the crossover in QCD best thought of as deconfinement or chiral
symmetry restoration?
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Summary

Backup: Is there physics at T.7

Is the crossover in QCD best thought of as deconfinement or chiral
symmetry restoration? Maybe neither? Maybe look for influence
on hydrodynamic evolution: slow cooling
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Summary

Backup: Is there physics at T.7

Is the crossover in QCD best thought of as deconfinement or chiral

symmetry restoration? Maybe neither? Maybe look for influence
on hydrodynamic evolution: slow cooling

()
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Wuppertal-Budapest (2010)
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Summary

Backup: Is there physics at T.7

Is the crossover in QCD best thought of as deconfinement or chiral
symmetry restoration? Maybe neither? Maybe look for influence
on hydrodynamic evolution: slow cooling

(Ty/m™

Wouppertal-Budapest (2010)
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