Controlling errors in the continuation of lattice results to finite chemical potential

Sourendu Gupta, with Saumen Datta, Rajiv Gavai

TIFR Mumbai

GGI Firenze, September 13, 2012

QCD at finite chemical potential

- Action has indefinite sign, so direct simulation is not possible.
- Thermodynamic quantities, pressure, entropy density, number density are real.

Hasenfratz, Karsch 1983; Bilic, Gavai 1983

May be able to obtain some information using series expansions and resummations. Maclaurin expansion:

$$\frac{1}{T^4}P(T,\mu_B) = \frac{P(T)}{T^4} + \frac{1}{2} \frac{\chi^{(2)}(T)}{T^2} \left(\frac{\mu_B}{T}\right)^2 + \frac{1}{4!} \chi^{(4)}(T) \left(\frac{\mu_B}{T}\right)^4 + \cdots$$

Gavai and SG, 2002

 Breakdown of series expansion most easily studied; use successive estimators of radius of convergence.
 Gavai and SG, 2005, 2008, 2012

Experimental data

μ

Maybe possible to determine thermodynamic state variables, *i.e.*, reach equilibrium at "freeze out". Interactions negligible after freeze out so ideal gas may be good description. Braun-Munzinger, Stachel, Cleymans, Redlich, Becattini

Experimental data

Maybe possible to determine thermodynamic state variables, *i.e.*, reach equilibrium at "freeze out". Interactions negligible after freeze out so ideal gas may be good description. Braun-Munzinger, Stachel, Cleymans, Redlich, Becattini

Experimental data

Maybe possible to determine thermodynamic state variables, *i.e.*, reach equilibrium at "freeze out". Interactions negligible after freeze out so ideal gas may be good description. Braun-Munzinger, Stachel, Cleymans, Redlich, Becattini

Fluctuations of conserved quantities

In a single heavy-ion collision, each conserved quantity (B, Q, S) is exactly constant when the full fireball is observed. In a small part of the fireball they fluctuate: from part to part and event to event.

Asakawa, Heinz, Muller 2000; Jeon, Koch 2000

- If ξ³ ≪ V_{obs} ≪ V_{fireball}, then fluctuations can be explained in the grand canonical ensemble: energy and B, Q, S allowed to fluctuate in one part by exchange with rest of fireball: diffusion. Theoretical control requires transport coefficients.
 SG 2007
- Is V_{obs} ≪ V_{fireball}? Experimental checks needed; corrections possible. Is V_{obs} ≫ ξ³? Measure screening correlators and use finite size scaling. Do fluctuations freeze out at the same temperature as hadron chemistry? Peclet number: depends on transport coefficients.

Event-to-event fluctuations

Central rapidity slice taken. p_{T} of 400–800 MeV. Important to check dependence on impact parameter. Protons observed: isospin fluctuations small.

Shape of distribution

Shape of distribution captured in cumulants $[B^n]$. Cumulants change with volume (proxy: N_{part}), by central limit theorem.

QCD predictions needed at finite μ_B

Shape variables: $[B^n] = (VT^3)T^{n-4}\chi_B^{(n)}(T,\mu)$. Ratios of cumulants are thermodynamic state variables:

SG, 2009; Athanasiou, Rajagopal, Stephanov, 2010

The need for Padé approximants

Can we sum these series?

$$\frac{1}{T^4}P(T,\mu_B) = \frac{P(T)}{T^4} + \frac{1}{2} \frac{\chi^{(2)}(T)}{T^2} \left(\frac{\mu_B}{T}\right)^2 + \frac{1}{4!} \chi^{(4)}(T) \left(\frac{\mu_B}{T}\right)^4 + \cdots$$
$$\frac{\chi^{(2)}(T,\mu_B)}{T^2} = \frac{\chi^{(2)}(T)}{T^2} + \frac{1}{2!} \chi^{(4)}(T) \left(\frac{\mu_B}{T}\right)^2 + \frac{1}{4!} T^2 \chi^{(6)}(T) \left(\frac{\mu_B}{T}\right)^4 + \cdots$$

At very small μ_B series expansion may be useful (LHC conditions).

But series may diverge at or near the freeze out curve, so truncated series expansion may be wrong. The shape variables m_i have simple poles at a critical point. So useful to try Padé approximants.

Need to understand error propagation. Gavai, SG 2010

The problem?

Want to evaluate the [0,1] Padé approximant

$$P(z;a)=\frac{1}{z-a},$$

at various $z = \mu_B/T$ for a determined from lattice measurement. If a has Gaussian errors, then for any z, there is a probability that a = z. So the mean and variance of P both diverge. See this another way. Assume that the distribution of a is Gaussian with mean 1 and variance σ^2 . Then the distribution of P at fixed z is given by

$$p(P;z) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{P^2} e^{-(z-1-1/P)^2/(2\sigma^2)}.$$

The distribution is normalizable but none of the moments exist.

Is there a meaningful regularization?

Yes. Because of finite statistics the maximum and minimum values of the Padé approximant are always bounded.

If one estimates P(z; a) by a bootstrap, then one should take the number of bootstrap samples to be $\mathcal{O}(N)$. By accounting for the restricted range $|P| \leq \Lambda$, all the integrals are regularized. If the measurements are made with statistics of N, then $\sigma^2 \propto 1/N$. If

$$\epsilon(\Lambda) = 1 - \int_{-\Lambda}^{\Lambda} dP p(P; z),$$

and Λ is chosen such that $N\epsilon(\Lambda) \ll 1$, then the regularization is sensible.

With $\sigma^2 \propto 1/N$ and $\epsilon \propto 1/N$, in the limit $N \to \infty$ is it possible to remove the regularization and have finite $\langle P \rangle$ and $\langle P^2 \rangle$?

Finite results

With increasing N one can arrange $N\epsilon$ to be constant by scaling $\Lambda \rightarrow \zeta \Lambda$ with $\zeta \propto N^{3/2}$. For Gaussian distributed a,

$$\delta \langle P \rangle \simeq e^{-\kappa (1-z)^2 N} \log(\zeta/\zeta')$$

 $\delta \langle P^2 \rangle \simeq e^{-\kappa (1-z)^2 N} (\zeta - \zeta') \Lambda \sigma$

As a result a bootstrap estimation will lead to bounded mean and error for the Padé approximant except close to the pole.

Beyond the Gaussian approximation: bound the growth of $\langle P \rangle$ and $\langle P^2 \rangle$ by verifying that the estimate of the error in the pole narrows faster than the growth of the probability in the tail of the distribution of the value of P(z; a).

Numerical experiments work when *a* is the ratio of two Gaussian distributed variates (each with variance going as 1/N).

Predictions along the freezeout curve

Lattice predictions along the freezeout curve of HRG models using $T_c = 170$ MeV.

Smaller lattice spacing

Lattice predictions along the freezeout curve of HRG models using $T_c = 170$ MeV.

Checking the match

Further developments

- Independent evidence of thermalization at freezeout. Rough at present because of errors in the experiment and lattice. Refinements required to test this critically: if it fails then may be QCD matter is not that opaque after all. Gavai SG, 2010; GLMRX, 2011
- By leaving the lattice scale unspecified, can use a comparison of lattice and experiment to give a scale. Eventually add to the repertoire of scale settings possible for lattice. Gavai SG, 2010; GLMRX, 2011
- If the scale setting is done as usual using T = 0 properties of hadrons, then one can extract freezeout parameters using finite μ_B extrapolation of lattice measurements. Useful if done with care (using resummed series).
 Gavai SG. 2010: Karsch 2012

 Most exciting: at some beam energy thermalization may not be seen. Then understand why. Critical point, or something else?