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QCD at finite chemical potential

◮ Action has indefinite sign, so direct simulation is not possible.

◮ Thermodynamic quantities, pressure, entropy density, number
density are real.
Hasenfratz, Karsch 1983; Bilic, Gavai 1983

◮ May be able to obtain some information using series
expansions and resummations. Maclaurin expansion:
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Gavai and SG, 2002

◮ Breakdown of series expansion most easily studied; use
successive estimators of radius of convergence.
Gavai and SG, 2005, 2008, 2012



Experimental data
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Maybe possible to determine thermodynamic state variables, i.e.,
reach equilibrium at “freeze out”. Interactions negligible after
freeze out so ideal gas may be good description.
Braun-Munzinger, Stachel, Cleymans, Redlich, Becattini



Experimental data

µ 

T

Maybe possible to determine thermodynamic state variables, i.e.,
reach equilibrium at “freeze out”. Interactions negligible after
freeze out so ideal gas may be good description.
Braun-Munzinger, Stachel, Cleymans, Redlich, Becattini



Experimental data

nuclear matter µ 

T

Maybe possible to determine thermodynamic state variables, i.e.,
reach equilibrium at “freeze out”. Interactions negligible after
freeze out so ideal gas may be good description.
Braun-Munzinger, Stachel, Cleymans, Redlich, Becattini



Fluctuations of conserved quantities

◮ In a single heavy-ion collision, each conserved quantity (B , Q,
S) is exactly constant when the full fireball is observed. In a
small part of the fireball they fluctuate: from part to part and
event to event.
Asakawa, Heinz, Muller 2000; Jeon, Koch 2000

◮ If ξ3 ≪ Vobs ≪ Vfireball , then fluctuations can be explained in
the grand canonical ensemble: energy and B, Q, S allowed to
fluctuate in one part by exchange with rest of fireball:
diffusion. Theoretical control requires transport coefficients.
SG 2007

◮ Is Vobs ≪ Vfireball? Experimental checks needed; corrections
possible. Is Vobs ≫ ξ3? Measure screening correlators and use
finite size scaling. Do fluctuations freeze out at the same
temperature as hadron chemistry? Peclet number: depends
on transport coefficients.



Event-to-event fluctuations
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Central rapidity slice taken. pT of 400–800 MeV. Important to
check dependence on impact parameter. Protons observed: isospin
fluctuations small.



Shape of distribution
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Shape of distribution captured in cumulants [Bn]. Cumulants
change with volume (proxy: Npart), by central limit theorem.



QCD predictions needed at finite µB

Shape variables: [Bn] = (VT 3)T n−4χ
(n)
B (T , µ). Ratios of

cumulants are thermodynamic state variables:
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The need for Padé approximants

Can we sum these series?
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At very small µB series expansion may be useful (LHC conditions).

But series may diverge at or near the freeze out curve, so truncated
series expansion may be wrong. The shape variables mi have
simple poles at a critical point. So useful to try Padé approximants.

Need to understand error propagation.
Gavai, SG 2010



The problem?

Want to evaluate the [0, 1] Padé approximant

P(z ; a) =
1

z − a
,

at various z = µB/T for a determined from lattice measurement.
If a has Gaussian errors, then for any z , there is a probability that
a = z . So the mean and variance of P both diverge.
See this another way. Assume that the distribution of a is Gaussian
with mean 1 and variance σ2. Then the distribution of P at fixed z

is given by

p(P ; z) =
1√
2πσ2

1

P2
e
−(z−1−1/P)2/(2σ2).

The distribution is normalizable but none of the moments exist.



Is there a meaningful regularization?

Yes. Because of finite statistics the maximum and minimum values
of the Padé approximant are always bounded.

If one estimates P(z ; a) by a bootstrap, then one should take the
number of bootstrap samples to be O(N). By accounting for the
restricted range |P | ≤ Λ, all the integrals are regularized. If the
measurements are made with statistics of N, then σ2 ∝ 1/N. If

ǫ(Λ) = 1−
∫ Λ

−Λ
dPp(P ; z),

and Λ is chosen such that Nǫ(Λ) ≪ 1, then the regularization is
sensible.

With σ2 ∝ 1/N and ǫ ∝ 1/N, in the limit N → ∞ is it possible to
remove the regularization and have finite 〈P〉 and 〈P2〉?



Finite results

With increasing N one can arrange Nǫ to be constant by scaling
Λ → ζΛ with ζ ∝ N3/2. For Gaussian distributed a,

δ〈P〉 ≃ e
−K(1−z)2N log(ζ/ζ ′)

δ〈P2〉 ≃ e
−K(1−z)2N(ζ − ζ ′)Λσ

As a result a bootstrap estimation will lead to bounded mean and
error for the Padé approximant except close to the pole.
Beyond the Gaussian approximation: bound the growth of 〈P〉 and
〈P2〉 by verifying that the estimate of the error in the pole narrows
faster than the growth of the probability in the tail of the
distribution of the value of P(z ; a).
Numerical experiments work when a is the ratio of two Gaussian
distributed variates (each with variance going as 1/N).



Predictions along the freezeout curve
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Lattice predictions along the freezeout curve of HRG models using
Tc = 170 MeV.



Smaller lattice spacing
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Lattice predictions along the freezeout curve of HRG models using
Tc = 170 MeV.



Checking the match
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Further developments

1. Independent evidence of thermalization at freezeout. Rough
at present because of errors in the experiment and lattice.
Refinements required to test this critically: if it fails then may
be QCD matter is not that opaque after all.
Gavai SG, 2010; GLMRX, 2011

2. By leaving the lattice scale unspecified, can use a comparison
of lattice and experiment to give a scale. Eventually add to
the repertoire of scale settings possible for lattice.
Gavai SG, 2010; GLMRX, 2011

3. If the scale setting is done as usual using T = 0 properties of
hadrons, then one can extract freezeout parameters using
finite µB extrapolation of lattice measurements. Useful if
done with care (using resummed series).
Gavai SG, 2010; Karsch 2012

4. Most exciting: at some beam energy thermalization may not
be seen. Then understand why. Critical point, or something
else?


