

One fact about quantum mechanics

Point-like particles have angular momentum

One fact about quantum mechanics

Point-like particles have angular momentum integer or half-integer multiples of \hbar

Handedness of matter

Neutrinos travel as fast as light

Just one chirality of neutrino

interacts with matter

Chirality of the universe The universe is left-handed!

What about quarks?

Protons and neutrons are made of quarks
very light particles
Chiral symmetry is pretty good
but both chiralities found in nature

Another fact about quantum mechanics

The state of a quantum system specified by probability amplitude $\psi(x)$ where $\int |\psi(x)|^2 = 1$

Another fact about quantum mechanics

The state of a quantum system specified by probability amplitude $\psi(x)$ where $\int |\psi(x)|^2 = 1$

Overall phase of ψ has no physical meaning

Another fact about quantum mechanics

The state of a quantum system specified by probability amplitude $\psi(x)$ where $\int |\psi(x)|^2 = 1$

Overall phase of ψ has no physical meaning so ψ and $\mathrm{e}^{i\alpha}\psi$ describe same system

Flavours of particles

If distinct particles

- 1. feel exactly the same kinds of forces
- 2. are not anti-particles of each other
- 3. but are still distinguishable
 - then they are called
 - different flavours of the same particle

Wavefunctions of flavours

A wavefunction of two flavours of particles is the collection of two wavefunctions:

$$\Psi = \begin{pmatrix} \psi \\ \phi \end{pmatrix}$$

with normalization

$$\int (|\psi|^2+|\phi|^2)=\int \Psi^\dagger \Psi=1$$

Phases of flavours

The phase of such a wavefunction is a matrix

$$U = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
 and $\Psi \to U \begin{pmatrix} \psi \\ \phi \end{pmatrix} = U \Psi$.

Phases of flavours

The phase of such a wavefunction is a matrix

$$U = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
 and $\Psi \to U \begin{pmatrix} \psi \\ \phi \end{pmatrix} = U \Psi$.

$$O = \begin{pmatrix} \gamma & \delta \end{pmatrix}$$
 and $\Psi \to O \begin{pmatrix} \phi \end{pmatrix} = 0$

Unitary (flavour) symmetries

Since Ψ and $U\Psi$ are the same physics is independent of U

Unitary (flavour) symmetries

Since Ψ and $U\Psi$ are the same physics is independent of U

Symmetry under multiplication by U!

Chiral symmetries

If the particles are massless then there is a flavour symmetry for each chirality

Spontaneous symmetry breaking

If Hamiltonian has a symmetry
but ground states do not
then we have spontaneous symmetry
breaking

Nambu-Goldstone Modes

Spontaneous breaking of unitary symmetry implies low energy excitation about equilibrium; called Nambu-Goldstone mode

A simple example Crystals break translational symmetry Phonons are Nambu-Goldstone bosons

Hadrons show broken chiral symmetry

mass(proton) \simeq mass(neutron) \simeq 938 MeV mass(rho) \simeq 770 MeV mass(pi) \simeq 140 MeV The pion is a Nambu-Goldstone boson

A fact about quarks

Chiral symmetry is broken spontaneously

Broken symmetries can be mended Crystals break translational symmetry Mended by vaporising them

Mending chiral symmetry Broken chiral symmetry can be mended by heating to 2,000,000,000 Kelvin

heating to 2,000,000,000 Kelvin

Mending chiral symmetry

Broken chiral symmetry can be mended by heating to 2,000,000,000 Kelvin

New fact about nature established in 2011

Phase diagram of matter

Methods

Theory: lattice gauge theory, supercomputers Experiments: relativistic heavy-ion colliders Astrophysics: neutron stars, early universe

Methods

Theory: lattice gauge theory, supercomputers Experiments: relativistic heavy-ion colliders Astrophysics: neutron stars, early universe Wikipedia: quark matter, lattice theory