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Feynman

The quantum problem

A quantum problem is completely specified either through the
Hermitean Hamiltonian, H(t), or the unitary time-evolution
operator,

U, T) = of Jo dtH(t)
There are path integral representations for this operator. Modern

QFT starts from these.

The finite temperature quantum problem is completely understood
if one computes the partition function

Z(B) = Tre~ Jo (),

which is formally the same problem in Euclidean time. The same
path integral suffices to solve this problem: only boundary
conditions change.
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Path integral: generalizing the 2-slit experiment

(xi, ti| U(ti, te) [xi, ti) = (i, tilxe, tr)

time

space
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Path integral: generalizing the 2-slit experiment

(i, ti| U(tiy t) Ixi, ti) = (xi, tilxe, t6) =) (X, tilXm, tm) (Xm, tm|XF, te)

Xm

time

space

Sum over all paths: path integral
Dirac (1933), Feynman (1948)
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A path integral is matrix multiplication

Define t = T /N; The amplitude for a quantum state |xp) at
initial time 0 to evolve to the state |xy) at the final time T can be
written as

(ao| U(0, T) o) = Z (ao| U((N —1)dt, T) [vn-1)
1,2, N1
(Yn—1] U(3t, (N —1)0t) [9hy_2) - -
(1| U(0t,0) o)

where we have inserted complete sets of states at the end of each
interval. The notation also distinguishes between the states at the
end points and the basis states |);) at the intermediate points.
This sum over all intermediate states is called the path integral.
The choice of the basis states |¢;) is up to us, and we can choose
them at our convenience.
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Diagonalising the evolution operator

If V is unitary and VTHV is diagonal, then

BT g ...
uo, T)=v | o e BT ...| Vvl
We will follow the convetion Ey < E; < ---. The sum over

intermediate states is diagonal, and the Vs act only on the initial
and final states to give

(a0 U(0, T) Jag) = |aQe BT + |ad2e BT 4 ...
Transforming to Euclidean time, it — t, one finds
(o] U0, T) ag) = |aQPe BT + |ad|2e BT + ...

When T > 1/(E1 — Ep), only the leading term survives. This gives
a numerical method for finding the eigenvalues.
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The transfer matrix

The Euclidean problem over one lattice step in time is now phrased
in terms of the transfer matrix —

e—Eo(;t 0 0
. 0 e—E1(5t 0 .
T(5t) = U(0, —idt) = VT 0 0 e~ E20t . v.

Since T and H commute, they have the same eigenvectors. If the
eigenvalues of T are called \;, then the eigenvalues of the
Hamiltonian are E; = —(log \;)/dt. Continuum limit: what is the
value of E; when 6t — 0.

If E; is finite when 6t — 0, then log A must go to zero. The
correlation length in the problem is £ = 1/log A, so this must
diverge in order to give finite E;. Therefore the continuum limit
corresponds to a critical point.
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Algorithm for computing energies

For a new formulation of quantum mechanics we have a trivial
algorithm for computing the energy. It exploits the simple fact that
given a randomly chosen unit vector |¢), the matrix element

(¢| T"|¢) tends to Aj as n — oo.

© Choose a source. At one time slice construct a random linear
combination of basis states: |¢g).

@ Choose a path configuration, i.e., a random |¢;) on each
lattice site (jot) with probability given by T. Construct a
measurement of the correlation function Co; = (¢;¢x).

© Repeat step 2 as many times as feasible and construct the
mean (Co;) = (do| T/ |¢o) (since |¢;) are chosen with
appropriate weight, the mean suffices).

Q Plot log (Cyj) against j. At sufficiently large j the slope gives
—Epdt. Alternatively, find a plateau in the local masses
m; = log((Co,j+1) / (Coj))-

Sourendu Gupta LGT



Feynman

A measurement of a correlation function
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Unitarity of U corresponds to a property of T called reflection
positivity. This implies that correlation functions decrease
monotonically.
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Wilson

Quantum field theory

Quantum mechanics of a single particle is a 1-dimensional field
theory. The (Euclidean) Feynman path integral is

Z= /Dxexp [—S[x]],

where S is the action. The variable of integration is the quantum
state of the system; since we chose to work with a basis of position
eigenstates, this appears to be an integral over the position x. This
integral is regularized by discretizing time.

We extend this to a quantum field theory in dimension D. If the
space-time points are labelled by x, and the fields are ¢(x), then
the Euclidean partition function is

z= / Do exp[~S(6)],

where S is the action density and the integrals may be regulated
by discretizing space-time.
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The lattice and the reciprocal lattice

In the usual perturbative approach to field theory, the computation
of any n-point function involves loop integrals which diverge.
These are regulated by putting a cutoff A on the 4-momentum.
When space-time is regulated by discretization, then the lattice
spacing a provides the cutoff A =1/a.

We will take the discretization of space-time to be a regular
hypercubic lattice, with sites denoted by a vector of integers

x = aj. When fields are placed on such a lattice, ¢(x), the
momenta are no longer continuous, but form a reciprocal lattice.

2
k=",
a

where the | are integers. The physics at all points on the reciprocal
lattice are equivalent.
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Fourier transforms and the Brillouin zone

In practice our lattice will not be infinite, but a finite hypercube
with, say, NP sites. At each site, x, on the lattice, let us put a
complex number ¢(x). We can put periodic boundary conditions,
d(x) = ¢(x + iN). Next, we can make Fourier transforms

Z¢ /kx NDZ¢ —IkX

where k = 2xl/N, and | have components taking integer values
between 0 and N or —N/2 and N /2. One sees that the boundary
condition allows components only inside the Brillouin zone, i.e.,
the region —7/a < k, < m/a. Any k outside this is mapped back
inside by the periodicity of the lattice.

The completeness of the Fourier basis implies

% Z elax = do
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The great unification

The renormalization procedure will be to take the continuum limit
a— 0 (i.e.,, N — 00) keeping some physical quantity fixed, such as
a mass, m. If this is fixed in physical units, then in lattice units it
must diverge as a — 0. This corresponds to a second order phase
transition on the lattice.

A lattice field theory in Euclidean time and D dimensions of space
is exactly the same as a statistical mechanicsona D + 1
dimensional lattice. Here is the precise analogy—

Transfer matrix

Partition function
Correlation function

2nd order phase transition
Reflection positivity

Action

Path integral
2-point function
Continuum limit
Unitarity

rreee
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Phase transitions
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Normal single phase behaviour, two-phase coexistence (first order
phase transitions), three-phase coexistence (triple points), critical

point (second order phase transitions).
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Divergences and critical exponents
Scaling of free energy at a critical point (T¢, P.)
t
F(T,P):paf<b> p=P—P,t=T-T..
P

The scaling form implies power law divergence of the specific heat
(t=), order parameter (t~% and p~?) and order parameter
susceptibility (t~7) at the critical point. There are various relations
between these critical exponents since the scaling form contains
only two intensive variables (see [3]).
Also there is scaling of the correlation function—
2—d— r

G(r,T,pZO):r( n)g(t—iy)
At the critical point the correlation length diverges. The scaling
form implies that

1

go(till, G(r7t:O,p:0)OCm
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Coarse graining and the Renormalization Group

BN If the correlation length of a system is &, then one can
Y P P try to define coarse grained variables by summing over
colosscleces blocks of sites. When the block size becomes larger
e than &, the problem simplifies.

A renormalization group (RG) transformation is the following—

@ Coarse grain by summing the field over a block of size (a, and
scale the sum to the same range as the original fields. This
changes a — (a.

© Find the Hamiltonian of the coarse grained field which
reproduces the thermodynamics of the original system. The
couplings in the Hamiltonians “flow” g(a) — g(¢a) = g’

© The flow follows the Callan-Symanzik beta-function

0
B(g) = —(7?

(note the sign). A fixed point of the RG has B(g) = 0.
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Linearized Renormalization Group transformation

Assume that there are multiple couplings G; with beta-functions
B;. At the critical point the values are G. Define g; = G; — Gf.
Then,
B,‘(Gl, Gy, - ) = Z Bjigi + (’)(gz).
J

Diagonalize the matrix B whose elements are Bj;. In cases of
interest the eigenvalues, y, turn out to be real. Under an RG
transformation by a scaling factor ( an eigenvector of B scales as
v — (7Yv The eigenvalues are called anomalous dimensions.
Eigenvectors corresponding to positive eigenvalues scale away to
zero under RG, and so are called irrelevant operators. For
negative eigenvalues, the eigenvectors are called relevant
operators. those with zero eigenvalues are called marginal
operators. Marginal operators correspond to logarithmic scaling.
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Renormalization Group trajectories

Fixed points: £ = 0 (stable) or £ = oo (unstable).
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Renormalization Group trajectories
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. relevant
§
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Probability theory as a trivial case of field theory

Generate random variables x with a probability distribution P(x).
We can always shift our definition of x so that (x) = 0.
It is useful to introduce the moment generating function

N n jn _ Xj
Z(j)=> (x )= /dxe P(x).
The derivatives of Z(j) give the moments. Now define the
characteristic function F(j) = log Z(j). The derivatives give
cumulants. We will use the notation

o _ PO ey a2 2
2= CH0| - =

The Hamiltonian of statistical mechanics is analogous to

h(x) = log P(x). Then Z(j) is the partition function, and F(j) the
free energy. The derivatives of F give expectations of connected
parts; these are the cumulants.
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Coarse graining and the RG
Take a group of N random numbers, x;, and define their mean
1
X = N ZX,’.

The X are coarse grained random variables. A standard question
in probability theory is the distribution of these coarse grained
variables. Clearly this is a question in RG.

We need to compute the coarse grained characteristic function
Fn(j). First,

. 1 N N )
Zn(y) = dx e¥§ <x— X,') dx;e™\Xi
o = | v )1l
= [Z(j//\{)]N. implies
Fn() = NF (,JV)
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The central limit theorem: a fixed point theorem

Since ” 4 4
N — o2 3 Ml

we find the RG flow gives

N N 2! N2 3l N3 4l ’

In the limit, since all the higher cumulants scale to zero much
faster, we find that the RG flows to the Gaussian fixed point
Fn(j) = 02j2/(2N). This is the content of the central limit
theorem.

Subtleties may occur if 02 = 0, with extensions to the case when
all the cumulants up to some order are zero. Other subtleties arise
when the distributions are fat-tailed and all the cumulants diverge.
Other RG methods are needed for these special cases.
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Generating functions in field theory

Any integral with a non-negative integrand can be treated as a

D = 0 field theory. Some of the tricks one plays with integrals can
be generalized to field theories.

In any field theory it is useful to extend the path integral to a
generating functional of correlation functions—

Z[J) = / Do exp [— / d®x S(¢) + J(x)qb(x)} :

The connected parts of correlation functions are recovered as usual
by taking functional derivatives—

ho 1 62Z[J]
=)= 20550

J=0

These are clear generalization of the notions of the moment
generating function and the characteristic function.
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The Ising model

The Ising model on a one-dimensional lattice contains a “spin”
variable, o; = £1 at each site, i, of the lattice. The Hamiltonian is

N
H=-J E Oi0jt+1-
i=1

We may put periodic boundary conditions on the lattice through
the condition that oy+1 = 01. We write 5= J/T.
This can be solved by introducing the transfer matrix [2]

T(6) = (:55 e;) .

Since Z(B) = Tr TV, the eigenvalues of the transfer matrix
completely specify the solution. We find

z(8) =2V [(cosh BN + (sinh ﬁ)"’] .

The system becomes ordered only in the limit 5 — oo.
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Coarse graining and fixed points

However, we can also perform a coarse graining with ( = 2. Since

2cosh 23 2 —( z 1/z

T(8) = < 2 2 cosh 26) = 2/ cosh2 (1/2 é ) ’
where z = \/(cosh 23). This transfer matrix must be reproduced
by the new Hamiltonian (with coupling 3’). So the
Callan-Symanzik equation is 3’ = log z. The fixed points are
solutions of 8 = logz. There are 2 solutions: § =0 and co. 5 =0
corresponds to J = 0, i.e., the free theory. This is an attractive
fixed point. 8 = oo is a repulsive fixed point, because any finite 8
is attracted to 8 = 0.

0 oo}
® o
B

The RG flow for the 1-d Ising model is particularly simple.
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Bogoliubov

Power counting

Consider the relativistic quantum field theory of a single real scalar
field ¢. The Lagrangian density, £, can be written as a polynomial
in the field and its derivatives. One usually encounters the terms

1 1 g3 g4
P o A2 42 835 .3 &4 4
L 2(9”(;58 ¢+2M¢ +3!¢ +4!¢ +

Let us count the mass dimensions of the fields in units of a length
L or a momentum A. Since the action is dimensionless,
[£] = L=P = AP. The kinetic term shows that

[¢] _ LlfD/2 — /\D/Q*l‘

The couplings have dimensions

[M2] — L72 — /\2,
[g3] — L(D—G)/Z — /\(6—D)/27
[g4] — LD74 — A47D‘
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The upper critical dimension

For each operator in the theory there is a certain dimension at
which the coupling is marginal. This is called the upper critical
dimension, D,. The coupling g, corresponding to the operator ¢"

has
B 2r

=2
The mass is a relevant coupling in all dimensions, g3 is relevant
below D, = 6, g4 below D, = 4. All other operators are irrelevant
in D = 4. Derivative couplings are relevant (the kinetic term is
marginal) in all dimensions.
Bogoliubov and Shirkov [5] set out power counting rules for
divergences of loop integrals. It turns out that for D > D, an
operator is unrenormalizable; at D = D, the operator gives a
renormalizable contribution, and for D < D, the theory is
super-renormalizable.
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Field theory is not exactly statistical mechanics

Divergences in statistical mechanics are due to long-distance
physics. In field theory they are due to short distance physics.
Therefore, in statistical mechanics it is the power of L which
counts. For field theory, it is instead the power of A which
determines which terms are important.

This is also reflected in the differences in the physical meaning of
RG transformations in the two cases. The critical point in
statistical mechanics is a point in the phase diagram where the
correlation length actually becomes infinite. In field theory the
critical point can be reached for any mass of the particle by scaling
the lattice spacing to zero (momentum cutoff to infinity).

irrelevant un-renormalizable
marginal renormalizable
relevant <> super-renormalizable
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Scalar Field Theory

The continuum Lagrangian for a single component real scalar field
theory can be easily written for the lattice

S = PN o S0+ fia) — G()P + 2 mP(x) + V()
x p

= Y MPE(x) =D [#(x)e(x + )] + V().
x Iz
In the first line we have replaced derivatives by the forward
difference, V, on the lattice, and kept dimensional variables
explicit. The notation is that x denotes a lattice site, i one of the
D directions, [i an unit vector in that direction and a the lattice
spacing. In the second line we have absorbed appropriate powers of
a into every variable, written out the expressions in dimensionless
units and then set a = 1. Note that M? = D + m?a?/2.

By the earlier power-counting, it suffices to take V(¢) = ga¢*/4!
in D> 4.
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Notation for lattice theories

@ The lattice spacing will always be written as a except when we
use units where a = 1.

© We will use the notation x, y, etc., to denote either a point in
continuum space-time, or on the lattice.
© Fourier transforms on NP lattices are

B(k) = d(x)e*™, $(x) = % D (k)e >,k =2mi/N,
x k

where reciprocal lattice points i have components taking
values between 0 and N or —N/2 and N/2. In other words,
the Brillouin zone contains momenta between 7. The
completeness of the Fourier basis implies

1 .
ND Ze_’q.x = dog-
X
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Free scalar field theory

On a lattice of size NP the free theory, V = 0, can be completely
solved by Fourier transformation. The action becomes

S = Zk:; [m2 — ) (1 —cos ku)] P2 (k).

“w
Since the Fourier transform is an unitary transformation of fields,
the Jacobian for going from ¢(x) to ¢(k) is unity. Therefore, the
Fourier transformation gives a set of decoupled Gaussian integrals,
and

~1/2
Z[g) = /E[d¢(k)e—ﬁs - 1:[ [g(m2+%:sin2g”)]
1

\/det 5(v2 4+ m2)

where V is the forward difference oEerator.




Higgs

Low energy modes and Symanzik improvement

When m = 0 the two-point function of scalar field

\ / theory, G, vanishes at the center of the Brillouin zone

\ / and is maximum at the edges. Inside the Brillouin zone
./ « there is only one long distance mode when a — 0.

At small k one has G ~ k?[1 + O(k?a?)]. Symanzik
improvement consists of improving the a-dependence at tree level
at finite lattice spacing by adding irrelevant terms to the lattice
action. For a scalar field, one can write

G(k) = g(l — cos k) — 1—12(1 — cos2k,) = %kz + O(k®).

Hence, by removing the k* terms, one has an improved action.
Clearly this is achieved by taking the forward difference and the
two-step forward difference with appropriate coefficients.
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The interacting theory

The standard form of the action for the scalar theory is
S= |V(9) —rY_(x)dlx+ )|, V()= A" ~1)~ ¢
x 0

When the hopping parameter & is large we may expand around
the free field limit. This is lattice perturbation theory. In the limit
when k — 0 we may make a hopping parameter expansion around
a solution in which the sites are decoupled.

When A — oo the field at the scale of the cutoff must sit at the
minimum of the potential, so the model looks like the Ising model.
From our earlier discussion, we expect that the critical exponents
of scalar field theory must be the same as that of the Ising model,
i.e., the two are in the same universality class.
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Monte Carlo simulations

In general the theory is investigated by Monte Carlo simulations.
The algorithm is the following—
@ Start from a randomly generated configuration of fields,
¢(x), on the lattice.
Q At one lattice site, x, make a random suggestion for a new
value of the field, ¢'(x).
© Make a Metropolis choice as follows. If the change in the
action, AS, due to the change in the field is negative, or
exp(—BAS) is smaller than a random number r (uniformly
distributed between 0 and 1) then accept the suggestion.
Otherwise reject it.
© Sweep through every site of the lattice repeating steps 2, 3.
@ At the end of each sweep make measurements of the
moments of the field variables.
Repeat from step 2 as many times as the computational
budget allows.
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Bosons in D = 2

magnetized

K /
%\

unmagnetized

A g

The theory of interacting bosons in D = 2 has a non-trivial critical
point corresponding to the Ising model. RG trajectories lying
anywhere on the critical surface are attracted to this. Since the
scalar field in D = 2 is dimensionless, an infinite number of
couplings, g, in addition to k and A, need to be tuned to get to it.
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Triviality of the Higgs in D = 4

magnetized

critical line

unmagnetized

In D = 4 the only attractive point on the critical surface has

A = 0. Since all RG trajectories are attracted to A = 0, close to
the continuum limit perturbation theory can be used to examine
the beta-function. (M. Luscher and P. Weisz, Nucl. Phys., B 290, 25, 1987).
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