Probing $U_A(1)$ Restoration with Domain-Wall Fermions

P. Hegde¹, Z. J. Lin², M. Cheng³ (HotQCD Collaboration)

¹Brookhaven National Laboratory, NY, USA.

²Columbia University, NY, USA.

³Lawrence Livermore National Laboratory, CA, USA.

BYOPD, TIFR, December 14, 2010.

▲ ■ ▶ ▲ ■ ▶

The Symmetries of QCD

 QCD with N_f flavors of massless fermions is invariant under

 $G(N_f) \equiv SU_V(N_f) \otimes SU_A(N_f) \otimes U_V(1) \otimes U_A(1).$

- *SU_V*(*N_f*) conserves isospin while *U_V*(1) conserves baryon number.
- What about $SU_A(N_f)$ and $U_A(1)$?
 - If *N_f* is small, *SU_A*(*N_f*) spontaneously broken; the light mesons are the (pseudo-)Goldstone bosons.
 - $U_A(1)$ lost when the theory is quantized Chiral anomaly.
- SU_A(N_f) restored above a certain temperature T_c; what about U_A(1)?

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

The Fate of $U_A(1)$ at Finite Temperature

Figure: From the talk by H. Warringa, Strong and Electroweak Matter 2008.

- Gauge fields with non-trivial topology ($Q_{top} \neq 0$) can change the axial charge by $2N_f Q_{top}$.
- Effect quantum-mechanical; its probability decreases with increasing temperature *T* (Pisarski,Yaffe).

$U_A(1)$ Restoration and the QCD Phase Diagram

- If the effects of the anomaly are small around T_c, the 2-flavor transition will be first-order rather than second-order (Pisarski,Wilczek).
- Similarly, the phase diagram in the *T* μ plane can change drastically (Fukushima (PRD 2008), P. Deb *et al.*(PRC 2009)).

Looking for $U_A(1)$ Restoration on the Lattice

• The restoration of symmetries affects the particle spectrum viz.

$$\begin{array}{ccc} \pi^{\pm}(\gamma_{5}\otimes\tau^{\pm}) & \xrightarrow{U_{A}(1)} & \delta(I\otimes\tau^{\pm}) \\ s_{U_{A}(N_{f})} \downarrow & & \downarrow s_{U_{A}(N_{f})} \\ \sigma(I\otimes I) & \xleftarrow{U_{A}(1)} & \eta(\gamma_{5}\otimes I) \end{array}$$

 On the lattice, observe π[±], etc. by looking at appropriate correlators viz.

$$\mathcal{C}(t) = \sum_{x,y,z} \left\langle \bar{\psi} \Gamma_{T} \psi(0,0,0,0) \, \bar{\psi} \Gamma_{T} \psi(x,y,z,t) \right\rangle,$$

where Γ_{T} is a Dirac \otimes flavor matrix ($\pi^{\pm} \sim \gamma_{5} \tau^{\pm},$ etc.)

• Stronger Statement: The correlators themselves become equal (upto a sign) when the symmetry is restored.

$U_A(1)$ Restoration: A Review

- Is U_A(1) restored at T = T_c (Shuryak)? Negative for N_f = 2 light flavors, affirmative for N_f ≥ 3 (Cohen, Evans et al., Hatsuda and Lee).
- Studies of the 2- or 2+1-flavor theory with staggered fermions find that $U_A(1)$ is not restored at $T = T_c$ (Karsch and Laermann, Bernard *et al.*, Chandrasekharan and Christ, Kogut *et al.*, Christ and Wu, Cheng *et al.*[RBC-Bielefeld]).
- However theoretical issues in extrapolating staggered studies to the chiral limit(Vink, Vink and Smit).
- Also difficult to connect to topology since an index theorem for staggered quarks was not known (until recently).

<ロ> (四) (四) (三) (三) (三) (三)

Domain-Wall Fermions

- Five-dimensional fermions with a low-energy spectrum that is (i) four-dimensional, and (ii) chiral.
- Exact chiral symmetry for infinite fifth dimension. For $L_s < \infty$, massless fermions acquire "residual mass" m_{res} :
 - Weak coupling: $m_{\text{res}} \propto \exp(-AL_s)$.
 - Stronger coupling: New contributions from gauge fields, $m_{\rm res} \propto L_s^{-1}$. Use smoother gauge fields (Iwasaki) and an improved action (DSDR).
- Satisfy an index theorem for L_s = ∞; Dirac spectrum will be QCD-like.

・ロン ・聞 と ・ ヨ と ・ ヨ と

Thermodynamics with a Chiral Action

- DSDR+Iwasaki lattices of size $16^3 \times 8 \times L_s$ ($L_s = 32$ or 48) (Note volume still small). $m_{\pi} = 200$ MeV throughout.
- $T_c \approx 160$ MeV. Vector/axial vector correlators also become degenerate at this temperature.

Screening Correlators and Masses

 Screening correlators are defined by (Γ_T = Dirac ⊗ Flavor matrix)

$$\mathcal{C}(\mathbf{x}) = \sum_{\mathbf{y}, \mathbf{z}, t} \left\langle \bar{\psi} \Gamma_{\mathcal{T}} \psi(\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}) \, \bar{\psi} \Gamma_{\mathcal{T}} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z}, t) \right\rangle.$$

- We only looked at *connected* correlators *i.e.* bilinears with different quark flavors (*ū*γ_μd, etc.).
- The vector and axial vector correlators become degenerate when $SU_A(N_f)$ is restored. Similarly, if $U_A(1)$ is restored the scalar and pseudoscalar correlators should become degenerate.
- From the long-distance behavior of the correlators,
 C(x) ~ exp(-M_Γx), we can extract screening masses M_Γ.

・ 同 ト ・ ヨ ト ・ ヨ ト

The V/AV Channels

The vector and axial vector channels become degenerate at $T \approx 160$ MeV. This behavior implies that $M_V/M_{AV} \approx 1$ and is consistent with χ_{disc} peaking around the same temperature.

$U_A(1)$ Symmetry and the S/PS Correlators

 The scalar and pseudoscalar correlators that we measured were

$$C_{\mathcal{S}}(x) = \left\langle \bar{u}d(x)\bar{u}d(0) \right\rangle, \tag{1}$$

$$C_{PS}(x) = \left\langle \bar{u}\gamma^5 d(x)\bar{u}\gamma^5 d(0) \right\rangle.$$
(2)

• In terms of LH and RH components, these are

$$C_{S/PS}(x) = \left\langle \bar{u}_L d_R(x) \bar{u}_L d_R(0) + \bar{u}_R d_L(x) \bar{u}_R d_L(0) \right\rangle$$

$$\pm \left\langle \bar{u}_L d_L(x) \bar{u}_L d_L(0) + \bar{u}_R d_R(x) \bar{u}_R d_R(0) \right\rangle.$$
(3)

- The terms on the first line of eq. (3) break $U_A(1)$ symmetry while the terms on the second line preserve it.
- These terms may be isolated by looking at the sum and difference of *C_S* and *C_{PS}* respectively.

Pseudoscalar: All T

- Good signal for PS; S significantly noisier.
- However sum and difference separately give clean signals.
 So why is the scalar so noisy?

The $U_A(1)$ -Respecting Sector

Difference $\equiv PS \ (\equiv -S)$ in the absence of $U_A(1)$ violation. Changes smoothly with T.

The $U_A(1)$ -Violating Sector

- Non-zero even above *T_c*.
- Sum comparable to the difference at each temperature. This is why the scalar is so noisy.

Where does $U_A(1)$ -Violation Come From?

- The sum is zero *except* for specific configurations.
- Fewer and fewer such configurations at greater T. $U_A(1)$ -breaking decreases because the number of spikes (rather than their magnitude) decreases.
- The correlation between $U_A(1)$ -violation and non-trivial configurations has been observed before by Gavai, Gupta and Lacaze (PRD 2002).

The Mechanism of $U_A(1)$ Violation

 In QCD, gauge fields with non-trivial winding number Q_{top} can change the net axial charge viz.

$$\Delta \left(N_L - N_R \right) = 2N_f Q_{\text{top}}.$$
 (4)

• On the lattice, Q_{top} is well-defined for a chiral Dirac action. Hence we should expect the spikes to be correlated with fluctuations in Q_{top} .

Spikes and Topology

• The correlation between the spikes and *Q*_{top} is good but not perfect. There are fluctuations in *Q*_{top} that do not produce spikes and vice-versa. Need to understand this better.

ヘロト 人間 ト ヘヨト ヘヨト

$SU_A(N_f)$ Versus $U_A(1)$ Restoration

- Corresponding to each correlator is a susceptibility viz. $\chi_{\Gamma} = \left| \sum_{x} C_{\Gamma}(x) \right|.$
- $SU_A(N_f)$ breaking implies non-zero condensate $\Sigma \equiv \langle \psi \bar{\psi} \rangle$.
- $U_A(1)$ breaking: No order parameter, look for $(\chi_{\pi} \chi_{\delta}) \rightarrow 0.$
- The chiral condensate Σ and the S/PS susceptibilities both depend on ρ(λ) as

$$\Sigma = \int d\lambda \rho(\lambda) \frac{2m}{m^2 + \lambda^2},$$
(5)
$$\chi_{\pi} - \chi_{\delta} = \int d\lambda \rho(\lambda) \frac{4m^2}{(m^2 + \lambda^2)^2}.$$
(6)

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Is $U_A(1)$ restored at the same time that $SU_A(N_f)$ is?

The Eigenvalue Density

- $\Sigma = \pi \rho(0)$ (Banks and Casher). Sharp decrease in $\rho(0)$ for $T \ge T_c$.
- Some evidence for $\rho(\lambda) \sim \lambda^z$ with z > 1.

ъ

Susceptibilities versus Temperature

- χ_{top} is seen to decrease smoothly; this is also evident from the Q_{top} time history.
- $\chi_{\pi} \chi_{\delta} \neq 0$. This had been observed before by N. Christ and L. Wu (Lattice 2001).

▲ □ ▶ ▲ 三 ▶ .

- We see a strong correlation between non-zero topological charge and $U_A(1)$ violation in the scalar and pseudoscalar correlators.
- *U_A*(1)-breaking is nonzero at all temperatures studies; however decreases with increasing temperature.

くロト (過) (目) (日)

Conclusions (contd)

- Should be possible to relate this to the spectrum of low-lying eigenvalues.
- This requires a better understanding of the volume and quark mass effects.