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At sufficiently high temperature or large baryon number density:

Limits of Hadronic Matter
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• different limit forms in different T, µ regions

• does this arise from different hadronic interactions?

• does this lead to different deconfined states of matter?



Constituent Structure of Hadronic Matter
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• low µ: with increasing T , mesonic medium of increasing density
mesons experience attraction → resonance formation
mesons are permeable (overlap) → resonances ∼ same size

• low T : with increasing µ, baryonic medium of increasing density
nucleons experience attraction → formation of nuclei
nucleons repel (hard core) → nuclei grow linearly with A



In both cases, ∃ clustering

∃ relation between clustering and critical behavior? Frenkel 1939

Essam & Fisher1963

consider spin systems, e.g., Ising model

• for H = 0,
spontaneous Z2 symmetry breaking → magnetization transition

• but this can be translated into cluster formation and fusion

critical behavior via cluster fusion: percolation ≡
critical behavior via spontaneous symmetry breaking

Fisher 1967, Fortuin & Kasteleyn 1972, Coniglio & Klein 1980

• for H 6= 0, Isakov 1984

partition function is analytic, no thermal critical behavior
but clustering & percolation persists Kertész 1989

∃ geometic critical behavior



In spin systems,

∃ geometric critical behavior
for all values of H;

for H = 0, this becomes identical
to thermal critical behavior, with
non-analytic partition function
& Z2 exponents

for H 6= 0, ∃ Kertész line
geometric transition with
singular cluster behavior
& percolation exponents
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For spin systems,

thermal critical behavior ⊂ geometric critical behavior

Also in QCD? Hadrons have intrinsic size, with increasing density
they form clusters & eventually percolate



Hadron Percolation ∼ Color Deconfinement

Pomeranchuk 1951 Baym 1979, Çelik, Karsch & S. 1980

Recall percolation

• 2-d, with overlap:
lilies on a pond

isolated disks clusters percolation

• 3-d: N spheres of volume Vh in box of volume V , with overlap

increase density n = N/V until largest cluster spans volume:
percolation

critical percolation density np ≃ 0.34/Vh

at n = nP , 30 % of space filled by overlapping spheres,
70 % still empty



how dense is the percolating cluster? Digal, Fortunato & S. 2004

critical cluster density nm ≃ 1.2/Vh

Rh ≃ 0.8 fm ⇒ nm ≃
0.6

fm3 as deconfinement density

so far, cluster constituents were allowed arbitrary overlap

what if they have a hard core?

percolation for spheres of radius R0

with a hard core of radius Rhc = R0/2 Kratky 1988

hard cores tend to prevent dense clusters;

higher density needed to achieve percolating clusters

nb ≃
2.0

V0

=
0.25

Vhc
≃

1.0

fm3 ≃ 6 n0

for the deconfinement density of baryonic matter



∃ two percolation thresholds in strongly interacting matter:

• mesonic matter, full overlap: nm ≃ 0.6/fm3

• baryonic matter, hard core: nb ≃ 1.0/fm3

now apply to determine critical behavior

If interactions are resonance dominated,

interacting medium ≡ ideal resonance gas

Beth & Uhlenbeck 1937; Dashen, Ma & Bernstein 1969

include all PDG states for M ≤ 2.5 GeV, partition function

ln Z(T, µ, µS, V ) =
∑

mesons i
ln ZiM(T, V, µS)+

∑

baryons i
ln ZiB(T, µ, µS, V )

for mesonic and baryonic contributions; enforce S = 0



• low baryon-density limit: percolation of overlapping hadrons

nh(Th, µ) =
lnZ(T, µ, V )

V
= 0.6/fm3

Obtain at µ = 0

Th ≃ 180 MeV

deconfinement temperature

based on hadron percolation
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hadron percolation

baryons included, but hard core effects ignored

slow decrease of transition temperature with µ,
due to associated production



• high baryon-density limit: percolation of hard-core baryons

density of pointlike baryons

n0
b =

1
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∂ T lnZB(T, µ, V )
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hard core ⇒ excluded volume
(Van der Waals)
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1 + Vhcn0
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percolation threshold
→ transition line

ncb(T, µ) =
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combine the two mechanisms:

phase diagram of hadronic matter

• low baryon density:

percolation of overlapping hadrons

clustering ∼ attraction

• high baryon density:

percolation of hard-core baryons

NB:

nuclear attraction plus hard-core repulsion → 1st order transition
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clustering and percolation can provide

a conceptual basis for the limits of hadronic matter

in the QCD phase diagram



What happens beyond the limits?

There are two roads to deconfinement:

• Increase quark density so that several quarks/antiquarks within
confinement radius → pairing ambiguous or meaningless.

• Increase temperature so much that gluon screening forbids com-
munication between quarks/antiquarks distance r apart.
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Illustration of the second case:
heavy Q correlations, quenched QCD

Quarks separated by about 1 fm
no longer “see” each other for T ≥ Tc

mesonic matter:
when quark density is high enough,
gluon screening radius is short enough, so both coincide



baryonic matter?

in hadrons & in hadronic matter ∃ chiral symmetry breaking

⇒ confined quarks acquire effective mass Mq ≃ 300 MeV
effective size Rq ≃ Rh/3 ≃ 0.3 fm

through surrounding gluon cloud

what happens at deconfinement? Possible scenarios:

• plasma of massless quarks and gluons,
ground state shift re physical vacuum → bag pressure B

• plasma of massive “constituent” quarks, all gluon effects in Mq

“effective” quark? ∼ depends on how you look:

• hadronic distances, soft probes: massive constituent quark
(additive quark model)

• sub-hadronic distances, hard probes: bare current quark
(deep inelastic scattering)



Origin of constituent quark mass?
quark polarizes gluon medium → gluon cloud around quark

M q

M q
eff

(r)

r

r00 Rh

Mq ∼ mq + ǫgr
3

where ǫg is the change
in energy density of the gluon field
due to the presence of the quark

QCD:
non-abelian gluon screening
limits “visibility” range to rg

→ energy density of gluon cloud and screening radius
determine “asymptotic” constituent quark mass ∼ gluon cloud

relation to chiral symmetry breaking?

estimates from perturbative QCD Politzer 1976



effective quark mass M eff
q (r) at distance r

M eff
q (r) = 4 g2(r) r2
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−d

〈ψ̄ψ(r0)〉

with reference point r0 for determination of 〈ψ̄ψ(r0)〉; coupling is

g2(r) =
16π2

9

1

ln[1/(r2Λ2
QCD)]

for Nf = 3, Nc = 3 → d = 4/9

constituent quark mass is defined as solution of

Mq = M eff
q (r = 1/2Mq)

giving Mq in terms of r0 and 〈ψ̄ψ(r0)〉



With r0 = 1/2Mq (meeting of perturbative and non-perturbative)
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〈ψ̄ψ(r0)〉

and with ΛQCD = 0.2 GeV, 〈ψ̄ψ(r0)〉
1/3 = 0.2 GeV

Mq = 375 MeV; Rq = 0.26 fm

constituent quark mass determined by chiral condensate

how does 〈ψ̄ψ(T )〉1/3 change
with temperature?

gluon cloud evaporates,
constituent quark mass vanishes
as T → Tc T
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So there are two ways to make

the effective quark mass vanish

- decrease interquark distance

- increase temperature

M q

r
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rg
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increasing T

decreasing r

now consider different T − µ regions:

• µ ≃ 0, T ≃ Tc: interquark distance ∼ 1 fm but hot medium
makes gluon cloud evaporate ⇒ M eff

q ≃ 0

• T ≃ 0, µ ≃ µc: interquark distance ∼ 1 fm and cold medium,
gluon cloud does not evaporate ⇒ M eff

q ≃ Mq

in cold dense matter, M eff
q → 0 requires short interquark distance

∼ constituent quark percolation



intermediate massive quark plasma for 0.3 < r < 1 fm and T<∼Tc

Τ

symmetry breaking
spontaneous chiral

color confinement

spontaneous chiral
symmetry breaking

color deconfinement
 chiral symmetry restoration

µ

quark deconfinement

color deconfinement, but chiral symmetry remains broken;
constituents: massive colored quarks, gluons only as quark dressing

baryon density limit through quark percolation ncb ≃ 3.5 fm−3

• nuclear matter nb ≤ 0.9 fm−3

• quark plasma 0.9 fm−3 ≤ nb ≤ 3.5 fm−3

• quark-gluon plasma nb ≥ 3.5 fm−3



Transitions: Τ
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Nature of massive quark plasma

– massive quarks and (at higher T ) some massive antiquarks

– no gluons, “chiral pions”?

no color confinement, but colored bound states possible

anti-triplet qq bound states = diquarks
(genuine two-body states, not Cooper pairs)



attractive interaction for

qq → color anti-triplet,
qq̄ → color singlet,

with same functional form
of potential in r, T
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Bielefeld Lattice Group 2002

constituent quark plasma can be structurally similar to hadron gas:

• massive quarks

• (antitriplet) diquark and (singlet) qq̄ states

• higher excitations (colored resonance gas)

• also possible: glueballs, chiral pions

• all states have intrinsic finite size, hence ∃ percolation limit
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Conclusion

⇒ Three State Phase Diagram (modulo color superconductor)

• Hadronic mattter at low T, µ:
quarks and gluons confined to hadrons, broken chiral symmetry

• Quark plasma at low T , large(r) µ:
massive deconfined quarks, broken chiral symmetry

• Quark-gluon plasma at large T, µ:
deconfined massless quarks and gluons, restored chiral symmetry



Back-Up



quark plasma has effective color degrees of freedom

• hadron gas: deff = 1

• massive quark plasma: deff = Nc

• quark-gluon plasma: deff = N 2
c

relation to quarkyonic matter? McLerran & Pisarski 2007

phase structure of QCD for Nc → ∞:

• confined hadronic matter is purely mesonic,

since nb ∼ exp{(µ−M)}, and µ, M ∼ Nc.

• quark-gluon plasma becomes gluon plasma,

since gluon sector ∼ N 2
c , quark sector ∼ Nc.

• quarkyonic matter proposed to have

color degrees of freedom ∼ Nc, hence no “free” gluons.

• quark plasma, with nq ∼ Nc(µ
2
q −M 2

q ), contracted to µq = Mq.
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