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Angular motion

Since the radial Hamiltonian is H = p2/2m + U(r), the radial
equation of motion is mr̈ = −dU/dr . Now, in the notation used
earlier, U(u) = V (u) + u2 where u = λ/r and λ2 = |L|2/(2m).
Since dr = −λdu/u2, we find

dU

dr
= −u2

λ

[

dV

du
+ u

]

.

The definition of the angular velocity gives

φ̇ =

√

2

m

λ

r2
=

√

2

m

u2

λ
, so

d

dt
=

√

2

m

u2

λ

d

dφ
.

So, denoting derivatives with respect to φ by primes, one has

mr̈ = m
2

m

u2

λ

d

dφ

{

u2
d(1/u)

dφ

}

= −2u2

λ
u′′.
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The orbit equations and a special solution

Putting these together, we find the differential equation for the
orbit,

u′′ = −1

2

[

dV

du
+ u

]

.

The right hand side is the derivative of the effective potential. We
shall abbreviate the right hand side by writing it as −W (u).
A special solution of the orbit equations is obtained if the potential
has a minimum. In that case W (u0) = 0 for some zero, and u′′ = 0
if the separation between the particles is u0. This is the condition
for a circular orbit. Assuming that the potential is attractive and a
power law, i.e., V (u) = −κun, one finds W (u) = −κnun−1 + u.
The solution for the circular orbit is un−2

0 = 1/(κn).

Problem 37: Circular orbits

Check that for an attractive 1/r potential, this condition gives the
same result as that obtained earlier.
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Small changes in initial conditions

Make a small perturbation of the initial conditions around a
circular orbit to u = u0 + x , where x is small. Then u′′ = x ′′. The
right hand side can be written down as a Taylor expansion of
W (u). Then the orbit equation u′′ = −W (u) takes the form

x ′′ = −W1x − W2

2
x2 − W3

3!
x3 + · · · ,

where Wn is the n-th derivative of W with respect to u, evaluated
at u = u0.
If x is small enough, one might be able to retain only the first term
on the right. In this case, the orbit equation reduces to
x ′′ = −W1x . This has solutions

u(φ) = u0 + a1e
iωφ + b1e

−iωφ.

As long as W1 > 0 the solution is oscillatory, and the solution
oscillates around the initial trajectory.
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Stability of circular orbits

r0
0r

stable

unstable

The stability of circular orbits depends on whether the orbit is at
the local minimum or maximum of u. When it is at the minimum,
small displacements give rise to simple harmonic oscillations
around the stable orbit. This is an extension of the analysis of
static stability to a non-inertial frame.
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Closed orbits to first order in perturbations

For the attractive power law potentials given
earlier, one has

W1 = −κn(n− 1)un−2
0 +1 = −n+1+1 = 2− n.

This is positive for n < 2. Note that
ω =

√
2− n, and hence depends only the

exponent in the force law.
Clearly, x can increase exponentially for n > 2, and hence circular
orbits are unstable against perturbations for such potentials.
For n < 2, the orbits are closed whenever ω is rational. For the
special case of n = 1, the orbit oscillates once in the radial
direction as it goes once round in the angular direction, i.e., the
orbit is elliptical.
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Higher order in perturbations

The leading order result can be written as

u(φ) = u0

[

1 +
a1

u0
cosωφ

]

,

where a1 is a small quantity of order ǫ = δu/u0. If the orbit is
closed then the nonlinear terms generate higher harmonics at
higher orders in ǫ. By examining the x2 term, one sees that a
constant and a cos 2ωφ term are generated to order ǫ2, and from
the x3 term one can see that a third harmonic is generated to
order ǫ3. Beyond the leading order, one may try out a double
expansion of the form

x = α0ǫ
2 + α1ǫ cosωφ+ α2ǫ

2 cos 2ωφ+ α3ǫ
3 cos 3ωφ+ · · ·

Consistency of such a solution can be checked to this order by
keeping terms up to x3, and in each keeping terms up to order ǫ3

and the third harmonic.
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A double expansion

This means we write

x2 =
α2
1ǫ

2

2
[cos 2ωφ+1]+ǫ3[2α0α1+α1α2] cosωφ+ǫ

3α1α2 cos 3ωφ+· · · ,

where the neglected terms are either higher powers of ǫ or higher
harmonics. Similarly,

x3 =
ǫ3α3

1

4
[cos 3ωφ+ 3 cosωφ] + · · ·

From the equation, x ′′ = −W1x −W2x
2/2−W3x

3/3!, we find to
order ǫ, ω2 = W1, exactly as before. At order ǫ2 we find

−4ω2α2 cos 2ωφ = −W1α0 −W1α2 cos 2ωφ− W2

4
[cos 2ωφ+ 1]α2

1.

Equating terms in the same harmonics, we obtain

α0 = −W2α
2
1

4W1

and α2 =
W2α

2
1

12W1

= −α0

3
.
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The cubic term in the perturbation

The cubic terms in the perturbation are interesting. The third
harmonic gives a relation between a3 and a1, as expected, but the
first harmonic gives a consistency relation—

0 = −W2

2
[2α0 + α2]α1 cosωφ− W3

3!

3α3
1

4
cosωφ.

Substituting the values of α0,2 into this, one can remove all powers

of α1, and obtain the relation 5W 2
2 = 3W1W3 .

With attractive power law potentials, V (u) = −κun, we have

W1 =
(n − 2)

2
,W2 =

(n − 1)(n − 2)

2u0
,W3 =

(n − 1)(n − 2)(n − 3)

2u20
.

For n = 1 W2 = W3 = 0, so the relation is satisfied. Otherwise,
5(n − 1) = 3(n − 3), i.e., n = −2. This is Bertrand’s theorem:
generic orbits are not closed when n 6= 1 or −2. Explicit solutions
show orbits are closed for these two cases.
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The origin of tidal forces

r1

r2

Consider two bodies each moving under the action of the
force of a third body. The positions x1 and x2 then change
only due to the interaction V (x1) and V (x2). If these two
bodies exert no forces on each other, their relative position
x12 = x1 − x2 is nevertheless subject to a tidal force

ẍ12 = −∇1V (x1) +∇2v(x2).

Tidal forces can arise from any law of force.
Assume that V (r) = −κrn, so that the force is
F(r) = −κnrn−1r̂. If the position vector x2 is assumed to
depend on a parameter α, then one can write the tidal forces
as

Ft(r) = −κn
[

(n − 1)rn−2r̂
dr

dα
+ rn−1φ̂

dφ

dα

]

.
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Tidal geometry of a sphere

r

r( )
R α α

The typical geometry of tides is as above, with ǫ = R/r ≪ 1. We
find that

r2(α) = r2
[

1− 2ǫ cosα+ ǫ2
]

, tanφ =
ǫ sinα

1− ǫ cosα
.

To leading order in ǫ one finds

dr

dα
= −2R sinα,

dφ

dα
= ǫ cosα.

As a result, one finds the tidal force

Ft = −κRnrn−2
[

−2 sinαr̂ + cosαφ̂
]

.

For gravity, since n = −1, tidal forces fall off as 1/r3.Sourendu Gupta Classical Mechanics 2011: Lecture 12
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Some problems

Problem 38: Tide shapes

Transform the expression for tidal forces to a system of spherical
coordinates fixed to the center of the sphere on which the tides are
being studied. Does this explain why ocean tides have periodicity
of about 12 hours?

Problem 39: Three body tides

Consider the tides on a sphere due to two external fixed centers of
force. Assume that the angle between the lines joining the center
of the sphere to the two external centers of force make an angle of
ψ. How does the shape of the tides depend on ψ?

Problem 40: Roche limit

Read about Roche’s limit and work out the physics.
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Ubiquitious scattering problems

L=0
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Ubiquitious scattering problems

large E
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Ubiquitious scattering problems

small E

large E
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Ubiquitious scattering problems

small E

large EResonance
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Ubiquitious scattering problems

resonance

small E

large EResonance

Problem 40: Dynamics near a resonance

Use perturbation theory to work out the dynamics near a
resonance.
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