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Euler equations

The simplest description of a rotating body is found in the body
frame with axial directions chosen along the principal axes of the
body. Clearly, for any vector
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+ ω × V,

where the subscript i refers to the change in the inertial system
and r to the change in a system rotating with angular velocity ω.
Using this we get Euler’s equations for rigid bodies in the body
frame

Ṗ+ ω × P = F, L̇+ ω × L = M.

Euler’s equations are most useful in a body frame oriented along
the principal axes of the rigid body. In this frame the inertia
ellipsoid is diagonal. Although L and ω point in different
directions, Li = Iiωi .
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Components of Euler’s equations

Component-wise the second of Euler’s equations can be written as

Ii L̇i + ǫijkωjωk Ik = Mi .

It is worth displaying the component equations

ω̇1 =
M1

I1
+

(I2 − I3)

I1
ω2ω3,

ω̇2 =
M2

I2
+

(I3 − I1)

I2
ω3ω1,

ω̇3 =
M3

I3
+

(I1 − I2)

I3
ω1ω2.

The second term on the left is nonzero only when all the Ik are
non-zero.
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Two problems

Problem 60: Free motion of a spherical top

For a spherical top, we have I1 = I2 = I3 = I . When this is in free
motion then all the Euler equations reduce to ω̇i = 0. What is the
path of a point on the surface of the top, as seen from body and
space frames?

Problem 61: Spherical top

When a spherical top has a couple acting on it, choose axes so
that M1 = M2 = 0. Then the equations of motion are ω̇1,2 = 0
and ω̇3 = M/I . Solve the equations of motion. What is the path
of a point on the surface of the top, as seen from body and space
frames?
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Free motion of a symmetric top

We set M = 0. For the symmetric top we take I1 = I2. Then the
3-component of Euler’s equations gives ω̇ = 0. Since ω3 is a
constant, we introduce a new constant frequency
ω = |I3 − I1|ω3/I1. Then the remaining Euler’s equations become

ω̇1 = ±ωω2, and ω̇2 = ∓ωω1.

When I3 > I1 then the first equation has a plus sign, and minus
otherwise. In either case, they give ω̈1,2 = −ω2ω1,2.
So each of these two components of ω change harmonically with
time. This describes the precession of the vector L around the
3-direction in the body frame. In the space frame since L is fixes,
this describes the precession of the body around the direction of L,
exactly as seen before.
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A problem

Problem 62: Symmetric top with couple

Assume that I1 = I2 6= I3 and a couple acts on this symmetric top
with M1 = M2 = 0. Then, for ω3 we find ω̇3 = M3/I3, exactly as
for the spherical top. Introducing the notation υ = M3/I3, we can
write the solution as

ω3(t) = ω0
3 + υt,

where the constant of integration, ω0
3 = ω3(0). With the notation

r = (I3 − I1)/I1 and ω = |r |ω0
3, the remaining equations are

ω̇1 = ±ωω2 + rυt, and ω̇2 = ∓ωω2 − rυt.

Solve these equations and find what nutation looks like in the body
frame.
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The free motion of a rigid body

The Lagrangian for the free motion of a rigid body is

T =
1

2
MṘ

2
+

1

2
ω · I · ω.

In an inertial frame co-moving with the CM, the conserved
quantities are the angular momenta L = Iω and the energy. With
six dimensions of phase space and four constraints, the motion can
be reduced to two dimensions of phase space.
We can write the conservation relations as

2E =
L21
I1

+
L22
I2

+
L23
I3
,

L2 = L21 + L22 + L23.

We take I1 ≤ I2 ≤ I3. Then these equations describe the
intersection of a sphere of radius L with an ellipsoid with semi-axes
given by the Ik . Intersections are guaranteed .
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Solving Euler’s equations

The conservation equations are

2E = I1ω
2
1 + I2ω

2
2 + I3ω

2
3, L2 = I 21ω

2
1 + I 22ω

2
2 + I 23ω

2
3.

They allow us to eliminate two of the variables by writing

ω2
1 =

1

I1(I3 − I1)

[

2EI3 − L2 − I2(I3 − I2)ω
2
]

,

ω2
3 =

1
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[

L2 − 2EI1 − I2(I2 − I1)ω
2
]

The equation for ω2 is of the form

ω̇2 =
1

I2
√
I1I3

√

(a1 − b1ω2
2)(a2 − b2ω2

2).

This can be integrated using elliptic functions. Do it
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Poinsot’s analysis
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Poinsot’s analysis

3

1

2

Sourendu Gupta Classical Mechanics 2011: Lecture 16



Euler equations Poinsot’s construction Rolling Keywords

Poinsot’s analysis
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L2 ≃ 2EI3,
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Poinsot’s analysis
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L2 ≃ 2EI3, L
2 ≃ 2EI1,
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Poinsot’s analysis
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L2 ≃ 2EI3, L
2 ≃ 2EI1, and L2 ≃ 2EI2.
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Rolling of rigid bodies on each other

If a rigid body moves over another such that the point of contact
is instantaneously at rest, then it is said to roll without slipping.
This gives a constraint on the velocities: cαi q̇i = 0 (where
1 ≤ α ≤ C labels the constraint equation.

Sphere rolling on a plane

For example, for a ball rolling on a horizontal table, one has
v = Rω × ẑ where v is the velocity of the CM and R is the radius
of the sphere. Although v = ẋ, where x are the coordinates of the
CM, ω are not the total time derivatives of a vector of coordinates.
So the constraint on velocities cannot be integrated into a
constraint on coordinates.

Since, the constraint equations cannot be used to elimiate some
coordinates, these are non-holonomic constraints. Disk? We have
to extend the Lagrangian formalism to deal with this.
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Lagrange multipliers

Use the coordinates counted without the constraint of rolling
without slipping to write the kinetic and pontetial energies for the
D degrees of freedom. Neglecting the constraints, the variation of
the action is the usual expression

δS ′ =

∫

dt
∑

i

δqi

[

∂L

∂qi
− d

dt

(

∂L

∂q̇i

)]

.

However, the constraints modify this expression. One utilizes the
method of Lagrange multipliers which allows us to treat all the
coordinates as independent. This modifies the equations to give

∂L

∂qi
− d

dt

(

∂L

∂q̇i

)

=
∑

α

λαcαi , and

∑

i

cαi q̇i = 0.

The total number of equations is D + C which is equal to the total
number of unknowns (the D different qi and the C different λα).
λαcαi are forces of reaction.
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