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The continuum limit

The Lagrangian of the discrete (lattice) problem that we just
solved was

L =
m

2

∑

i

ξ̇2i −
KQ2

2

∑

i

(

ξi+1 − ξi
Q2

)2

,

where K is the spring constant, m the mass of the particles, and Q

is the equilibrium distance for each oscillator. The equilibrium size
of the system is QN. Now we take N → ∞ keeping the total size
fixed. The equilibrium position of the i-th oscillator is at
x = iQ/N. In the limit as N → ∞, we find

L =

∫

dx

{

[

∂ξ(x , t)

∂t

]2

− ω2

[

∂ξ(x , t)

∂x

]2
}

≡

∫

dxL

The sum over i in the expression on top becomes the integral over
x , and the difference between nearest neighbours becomes the
spatial derivative. L is called the Lagrangian density.
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The Lagrangian formalism

The degrees of freedom are the fields, ξ(x , t): in this case a scalar
field. If we start with oscillations in three spatial dimensions, it
would be more natural to have a vector field of displacements of
each particle in the three dimensional lattice, ξ(x, t).
The kinetic term is usually taken to be quadratic in the first
derivative of the field—

L =
1

2

(

∂ξ(x, t)

∂t

)2

− V [ξ(x, t)].

V could involve the fields at widely separated points. Since V is a
scalar, this can always be systematically approximated by a few low
order derivatives at a point—

V = Pn(ξ) +
κ

2
(∇ξ)2 + · · ·

where Pn is a polynomial of order n.
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Symmetries of the Lagrangian

The Lagrangian has a symmetry. If we make a transformation of
the components of the field, ξ → Oξ, where O is a 3× 3
orthogonal matrix, then the kinetic term,

∑

i ξ̇
2
i , is invariant under

this transformation. So is the term (∇ξ)2. If the terms in Pn are
powers of |ξ|2, then the whole Lagrangian is symmetric under
these orthogonal transformations. Then there must be conserved
quantities.

Problem 65: The conserved charge

For the Lagrangian that we wrote, the conjugate momenta are

π(x, t) =
∂L

∂ξ̇(x, t)
= ξ̇(x, t)

Use Noether’s theorem to find the conserved charge of this field
theory. Also find the equations of motion.
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Scaling symmetries of the Lagrangian

Examine the scaling of the field theory when the spatial distances
are scaled as x → λαx and the time is scaled as t → λβt. Assume
also that the field scales simultaneously as ξ → λγξ. The integral
measure d3x scales as λ3α. So the contribution of the kinetic term
to the Lagrangian scales as λ3α−2β+2γ .
The derivative term in the potential scales as λ2γ+α. If these are
to scale in the same way, then one must have κ → λ2(α−β)κ. If
this is the scaling of the coupling constant then any solution, ξ, to
the equations of motion can be scaled to zero by appropriate
choice of λ. These are the kinds of small oscillations problems
which we have examined before.
In general, scaling constrains the form of the coupling constants
which give rise to simple oscillations. When the scaling of the
coupling constants change, one may not be able to shrink the field
amplitudes to zero: giving rise to interesting solitonic solutions to
the equations of motion.
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Relativistic classical field theories

If the Lagrangian density is to be Lorentz invariant, then two
simplifications occur.
First the symmetries dictate that each term in the Lagrangian
density has to be a Lorentz scalar. For a scalar field ξ this places
no restrictions on the polynomial terms in the potential. However,
it implies that the term involving the first derivatives of the action
should be (∂µξ)

2, which relates the coefficients of the time and
space derivatives. For a vector field ξν the polynomial part is
restricted to powers of ξνξ

ν and the kinetic part determines the
first derivative terms to be ∂µξν∂

µξν . Other constraints follow in a
similar fashion. Noether’s theorem gives the conserved charge and
current.
Second, the scaling laws must have β = α, so that the different
parts of the term ∂µξν∂

µξν scale similarly. The polynomial terms
in the action then determine whether there are non-trivial scaling
laws.
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Oscillatory equations

The most general differential equations for an oscillator with
time-independent coefficients is

ξ̈ + 2K ξ̇ + ω2ξ = F (t),

where K is called the damping coefficient, ω is the oscillator
frequency and F (t) is the driving force. Since the equations are
linear, it is useful to use a Fourier expansion

ξ(t) =

∫ ∞

−∞

dz ξ̃(z)e−izt , and ξ̃(z) =

∫ ∞

−∞

dt

2π
ξ(t)eizt .

In the integral z takes real values. This integral transform reduces
the differential equation into an algebraic equation in the frequency
domain—

−z2 − 2iKz + ω2 = F̃ (z).
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Discretized equations

Discretize time into equal steps: t = jh. Then the derivative
operator can be approximated as

ξ̇ ≃
1

h
[xi+1 − xi ] , and ξ̈ ≃

1

h
[xi+1 − 2xi + xi−1] .

Then, if one puts periodic boundary conditions in the time
direction one obtains the matrix equation

[

(−2 + A+ A†) + 2K (A− A†) + ω2
]

ξ = F ,

where the vector ξ has elements ξj , which are the values of ξ(t) at
times jh, and similarly for the vector F . We know how to solve this!

Problem 66: Lattice discretizations

Check that the derivative operator acting on the Fouier basis
functions gives the same eigenvalues as does A− A† in the limit
h → 0.
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The homogenous equations

The homogenous equations have a solution for any amplitude
whatsoever:

[−z2−2iKz+ω2]ξ = 0, and [(2−A−A†)+2K (A−A†)+ω2]ξ = 0.

The only non-zero solutions occur when the determinant of the
matrix vanishes. The eigenvalue equations are quadratic, so for
each zero there is a two-fold degeneracy of solutions. These
correspond to

z = −iK ±
√

ω2 − K 2.

If ξ and ζ are the two vectors which corresponds to these solutions,
then so is any linear combination. All initial conditions, ξ(0) and
ξ̇(0), therefore lead to solutions.
The eigenvalues lie in the lower half of the complex plane. Since
the eigenvectors are exp(−izt), they are damped in the future.
Anything else would violate the second law of thermodynamics.
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The propagator

The simplest inhomogenous equation is

[z2+2iKz−ω2]ξ = 1, and [(2−A−A†)+2K (A−A†)+ω2]ξ = 1.

This forcing function is the Fourier transform of the instantaneous
impulse, δ(t) or δt0. The solution of this equation is called the
propagator (or the Green’s function):

G (z) =
1

z2 + 2iKz − ω2
.

These diverge at the pole, i.e., at the solutions of the homogenous
equations. The general solution of the inhomogenous equation is a
superposition of this with the solutions of the homogenous
equations. When K 6= 0 the latter solutions decay after time
t ≫ 1/K , and therefore we will not write these terms for the
steady state solution.
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Steady state under harmonic forcing

If the forcing function is harmonic, with frequency Ω, then the
solution in the Fourier domain is

ξ(z) =
δ(z − ω)

z2 + 2iKz − ω2
.

Since Ω is real there are no divergences, as long as K > 0. The
complex solution in the time domain is

ξ(t) =
e
−iΩt

Ω2 − ω2 + 2iKΩ

The real part of the solution is

ξ(t) =
(Ω2 − ω2) cosΩt + 2KΩ sinΩt

(Ω2 − ω2)2 + 4K 2Ω2
.

The amplitude increases as Ω → ω, becoming proportional to 1/K
when Ω = ω. This is called resonance.
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Resonance

Problem 67: Investigating the resonance

Investigate the shape of the complex response ξ(t) due to a
harmonic forcing function F (t) = exp(iΩt). Use Mathematica to
draw graphs of the variation with Ω of (a) the square of the
modulus, |ξ(t)|2, (b) the phase of ξ(t), and (c) the Argand
diagram, i.e., the path traced out in the complex plane by ξ(t).

Problem 68: Causal response of an oscillator

When the forcing function is a unit pulse, F (t) = 1 when
0 ≤ t ≤ 1, and vanishes at all other times. Find the response ξ(t)
due to this pulse, such that solution is causal, i.e., the oscillator is
at rest up to time t = 0. Does causality impose a relation between
the real and imaginary parts of ξ(t)?
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Causality

Problem 69: Causal restrictions on oscillators

Does causality place any restrictions on the order of the differential
equation for an oscillator? Examine higher order differential
equations and check whether they always give rise to damped
oscillations in the presence of friction.

Problem 70: Causal restrictions on field theories

From your analysis of causal restrictions on the equations of an
oscillator, check whether you can place any constraints on the
equations of a field theory. Does this imply any restrictions on the
Lagrangian density of a classical field theory?
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