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Generalized coordinates

Consider again the motion of a simple pendulum. Since it is one
dimensional, use arc length as a coordinate. Since radius is fixed,
use the angular displacement, θ, as a generalized coordinate. The
equation of motion involves θ̈, as it should, although the
coordinate is dimensionless.

Problem 5: Simple pendulum

Choose θ as the generalized coordinate for a simple pendulum.
What is an appropriate generalized momentum, so that its time
derivative is equal to the force? What is the engineering dimension
of the generalized momentum. Draw phase space trajectories for
the pendulum: periodic motion corresponds to closed trajectories.
What is the dimension of the area enclosed by such a trajectory?
What is the physical interpretation of this area?
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Many particles

Following the motion of N particles requires keeping track of N
vectors, x1, x2, · · · , xN . The configuration space has 3N
dimensions; the phase space has 6N dimensions. We say that there
are 3N degrees of freedom. Phase space volume has engineering
dimension of (energy × time)3N .
The equations of motion are

ẋi =
pi

mi

, ṗi = fi ({x,p}).

If these are subject to some non-holonomic constraints, then there
is no reduction in the number of degrees of freedom. If there are
M scalar equations expressing holonomic constraints, then the
number of degrees of freedom reduces to D = 3N −M. There is a
consequent change in the dimension of phase space and the
engineering dimension of phase space volume.
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Generalized coordinates

If there are M constraints of the form fα(x1, x2, · · · , xN) = 0 with
1 ≤ α ≤ M, then all the coordinates of the N particles are given in
terms of generalized coordinates qi where 1 ≤ i ≤ D = 3N −M.
In other words, one has N vector-valued functions
xj = xj(q1, q2, · · · qD , t). If the generalized coordinates are to
provide a complete description of the dynamics then knowledge of
all the qk should be equivalent to specifying all the xj . A counting
of the number of scalar equations shows that this is possible.
Clearly, the velocities are

vj = ẋj =
∑

k

∂xj
∂qk

q̇k +
∂xj
∂t

.

As a result one has the important identity

∂vj
∂q̇k

=
∂xj
∂qk

.
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Generalized forces

The equations of motion are equivalent to the principle that if one
makes an instantaneous virtual displacement of a mechanical
system, then the work done by the forces goes into a change of the
total kinetic energy. In other words

∑

j

δxj · (Fj − ṗj) = 0.

Now one can use the generalized coordinates to rewrite the work
done by the forces

δW =
∑

j

δxj · Fj =
∑

jk

Fj ·
∂xj
∂qk

δqk =
∑

k

Qkδqk ,

where one has defined the generalized forces

Qk =
∑

j

Fj ·
∂xj
∂qk

.
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The change in kinetic energy

One can write

∑

j

mj ẍj · δxj =
∑

k

δqk





∑

j

mj v̇j
∂xj
∂qk





=
∑

k

δqk





∑

j

mj

{

d
dt

(

vj
∂xj
∂qk

)

− vj
∂vj
∂qk

}





=
∑

k

δqk





∑

j

mj

{

d

dt

(

vj
∂vj
∂q̇k

)

− vj
∂vj
∂qk

}





=
∑

k

δqk

[

d

dt

(

∂T

∂q̇k

)

−
∂T

∂qk

]
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The change in kinetic energy

One can write
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


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∑

k

δqk





d

dt





∑

j

mjvj
∂vj
∂q̇k



−





∑

j

mjvj
∂vj
∂qk









=
∑

k

δqk

[

d

dt

(

∂T

∂q̇k

)

−
∂T

∂qk
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Equation of motion

Since the virtual displacements of the generalized coordinates are
all independent, one can set each coefficient independently to zero.
Then we have

d

dt

(

∂T

∂q̇k

)

−
∂T

∂qk
= Qk .

If the particles move in a field of conservative forces then

Qk =
∂V

∂qk
and

∂V

∂q̇k
= 0.

Then the equations of motion can be written in terms of the
Lagrangian function L = T − V ,

d

dt

(

∂L

∂q̇k

)

−
∂L

∂qk
= 0.
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The Euler-Lagrange equations of motion

The generalized momenta are defined as

pk =
∂L

∂q̇k
.

One recovers the usual definition for systems where the velocities
appear only in the kinetic part of the energy. Similarly, if one
considers the kinds of systems where the coordinates only appear
in the potential, then

d

dt

(

∂L

∂q̇k

)

=
∂L

∂qk
implies ṗk = Qk .

The Euler-Lagrange equations reduce to the usual form of
Newton’s equations of motion in these cases. Interesting
generalizations arise in other cases.

Sourendu Gupta Classical Mechanics 2011: Lecture 2



Generalized coordinates D’Alembert-Lagrange Keywords and References

Particle in an electromagnetic field

The Lorentz force on a particle in an electromagnetic field is

F = q

(

E+
1

c
v × B

)

= q

(

−∇φ−
1

c

∂A

∂t
+

1

c
v ×∇× A

)

,

where q = charge, c = speed of light, v the velocity, E and B the
electric and magnetic fields, and φ and A the scalar and vector
potentials.
The Lagrangian formalism continues to be useful if one can write
down a velocity dependent potential V (q, q̇) such that

Q =
d

dt

(

∂V

∂q̇

)

−
∂V

∂q
.

Now using the identity

v ×∇× A = ∇(v · A) +
∂A

∂t
−

dA

dt
,

one finds that V = q(φ− v · A/c) gives the Lorentz force.
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Dissipation

The problem of dissipative forces lies a little away from the
developments made till now. However, models of frictional forces
show that they are proportional to the velocity. Hence, for the
dissipative forces on a body one may write the relation

Q = −
∂F

∂q̇
.

This introduces the Rayleigh term, F(q̇), which is usually chosen
to be quadratic in q̇. The equations of motion are then written as

d

dt

(

∂L

∂q̇

)

−
∂L

∂q
+

∂F

∂q̇
= 0.

In order to describe the motion of a body in a dissipative
environment both the Lagrangian L and the Rayleigh term F need
to be specified.
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